2008 ANNUAL REPORT
 of the
 INTERNATIONAL ST. CROIX RIVER WATERSHED BOARD

covering

The Orders of Approval with respect to the control of the discharge of the St. Croix River at Forest City, Vanceboro, and the water levels of East Grand Lake, Spednic Lake, Grand Falls Flowage and Milltown Dam Forebay
and

The Water Quality and Aquatic Ecosystem Health of the St. Croix River Boundary Waters

SUBMITTED TO

THE INTERNATIONAL JOINT COMMISSION
by

THE INTERNATIONAL ST. CROIX RIVER WATERSHED BOARD

TABLE OF CONTENTS

1.0 GENERAL 1
1.1 Synopsis for 2008 1
1.2 Board Membership 2
1.3 Performance as a Watershed Board. 3
1.4 Annual Public / Stakeholder Meeting in Basin 4
1.5 Annual Site Visit of Facilities in the Basin 4
1.6 Policy of the Board Regarding Dam Regulation 5
2.0 MANAGEMENT OF THE WATER LEVELS AND FLOWS 6
2.1 Summary 6
2.2 East Grand Lake Reservoir and Discharges Below Forest City Dam 6
2.3 Spednic Lake Reservoir and Discharges below Vanceboro Dam 7
2.4 Water Levels above Grand Falls Dam 7
2.5 Discharges at Baring, Maine 7
2.6 Headwater Elevations above Milltown Dam 8
3.0 WATER QUALITY 9
3.1 USGS Milltown Monitor 9
3.2 Environment Canada Monitoring Stations - Forest City and Milltown 10
4.0 STATUS OF POLLUTION ABATEMENT 12
4.1 Combined Sewer Overflows 12
4.2 Maine 13
4.3 New Brunswick 13
5.0 FISHERIES 15
5.1 Anadromous Fisheries 15
5.2 Shellfish Harvesting 16
6.0 WATERSHED INITIATIVES 18
6.1 Work Plan 2009-2013 18
6.2 Special Study Efforts - 2008. 18
7.0 OTHER DEVELOPMENTS IN THE WATERSHED 19
7.1 Maine FERC dam re-licensing 19
7.2 Maine LNG Facilities Proposals 19
7.3 Bayside Quarry 20
7.4 Navigable Waters Protection Act (NWPA) Revision 21
ACKNOWLEDGEMENTS 22
APPENDIX 1 Summary Orders of Approval \& Basin Map
APPENDIX $2 \quad$ Milltown, Grand Falls, Vanceboro, and Forest City Dams
APPENDIX 3 Hydrographs
APPENDIX $4 \quad$ Water Levels and Flows
APPENDIX $5 \quad$ Water Quality Data

1.0 GENERAL

1.1 Synopsis for 2008

For the fourth consecutive year, 2008 was a "good" water year on the St. Croix River system. Lake levels were maintained within normal levels and flows in the river provided satisfactory conditions for power generation, canoeing and kayaking, and support of aquatic life. During the year, flows and levels were maintained in accordance with IJC's Orders.

Several Board study efforts were either completed or nearing completion in 2008 including the work on combined sewer overflows (CSOs), the watershed rainfall runoff modeling study completed in June 2008 and the St. Croix River drainage area and stream network harmonization pilot project reported in August 2008.

A highlight of 2008 was the public release of the State of the St. Croix Watershed report in November. This culminated one of the Board's long-standing objectives and was a significant accomplishment for the Board's first year operating as a Watershed Board.

1.2 Board Membership

Canadian Membership

Bill Appleby

(Canadian Co-Chair)
Director, National Service Operations
Meteorological Services of Canada
Environment Canada
Dartmouth, NS

William Ayer

Advisor to New Brunswick Department of the
Environment
Fredericton, NB

Jessie Davies

Resident
St. Andrews, NB

Charles LeBlanc

Environment Canada
Environmental Science and Technology Centre Moncton, NB

Robert Stephenson, Ph.D.
Director, St. Andrews Biological Station
St. Andrews, NB

Peter Johnson

(Canadian Secretary)
Strategic Planning and Policy Division
Environment Canada, Atlantic Region
45 Alderney Dr.
Dartmouth, NS

U.S. Membership

Colonel Philip T. "Tom" Feir

 (U.S. Co-Chair)U.S. Army Corps of Engineers

New England District
Concord, MA

Carol Wood

Office of Administration and Resources
Management
U.S. Environmental Protection Agency

New England Regional Office
Boston, MA

Edward Logue

Regional Director, Eastern Maine
Maine Dept. of Environmental Protection
Bangor, ME
Joan Garner Trial, Ph.D.
Senior Atlantic Salmon Biologist
Department of Marine Resources
Bureau of Sea Run Fisheries and Habitat
Bangor, ME
Robert Lent, Ph.D.
Maine District Chief
United States Geology Survey
Augusta, ME

Barbara Blumeris

(U.S. Secretary)
U.S. Army Corps of Engineers

New England District
Concord, MA

1.3 Performance as a Watershed Board

In April, 2007, the St. Croix Board became the IJC's first designated International Watershed Board under the IJC's International Watersheds Initiative (IWI). The Board has been involved in workshop discussions with other IJC boards in 2008, contributing to the Third IWI Report that the IJC is preparing for governments. The IWI concept is to promote an integrated, ecosystem approach to issues arising in transboundary waters through enhanced local participation and strengthened local capacity. The approach recognizes the relationship between the watershed and the boundary waters. It also encourages a collaborative approach between Canada and the U.S. to prevent and resolve issues at the local level.

The Board embraces this ecosystem approach and will work to develop its long-term goals with the whole watershed in mind. In this regard, it will continue to work with local stakeholders to assist them in their efforts to balance competing water resource uses along the Boundary water with a viewpoint that incorporates the St. Croix watershed in Maine and New Brunswick and the St. Croix estuary.

With regard to the outer reaches of the St. Croix Estuary, the governance regime and ecosystem management effort underway in that transboundary area of the Gulf of Maine is of interest to the Board in light of the ecosystem/watershed approach upheld by the IJC. Since 1989, two Canadian provinces, three U.S. states, the U.S. and Canadian federal governments and several NGO and private sector partners have been working collaboratively in the shared waters of the Bay of Fundy and Gulf of Maine (GoM) through the Gulf of Maine Council on the Marine Environment (GOMC). The St. Croix River Watershed Board has, over the years, followed closely their efforts to achieve common ecosystem objectives for the Gulf of Maine through joint governance of this shared ecosystem.

The governance regime in the GoM, which can be described as a "soft" approach, is guided by a common set of principles, goals, objectives, priorities and actions which no one jurisdiction could achieve alone. The collegial and informal nature of the GoM Council has kept the many governmental agencies and partners at the table. Provincial and State leadership have been central to making this regime work and institutional flexibility has helped in addressing a common ecosystem agenda in this transboundary area. The Board will continue to follow integrated management initiatives in the St. Croix estuary and the Gulf of Maine transboundary area as these relate to IJC interests.

1.4 Annual Public / Stakeholder Meeting in Basin

The annual public meeting was held in McAdam, New Brunswick on the evening of August 19, 2008 at the historic McAdam Railway Museum. IJC Commissioners Sam Speck and Pierre Trepanier, along with IJC staff and St. Croix Board Members, attended the meeting. Invited presenters included Donna Adams (Domtar), Lee Sochasky (International Waterway Commission), Bill Richards (Environment Canada) and Forest Bell and Tricia Rouleau (FB Environmental), the latter presenting the Board's draft State of the Watershed Report. There were 28 people in attendance at the meeting, of which nine were members of the public.

After welcoming meeting participants and providing introductory comments, Bill Appleby introduced members of the Board, IJC staff and the two IJC Commissioners who acknowledged the work of the Board and the participation of local residents in their efforts and interest in protecting the health of the watershed. Bill Appleby elaborated on the work of the Board over the past year and its general oversight role in the Basin. He described several successfully completed projects and new projects being undertaken through the Board and with the support of the IJC. Project participants include federal, State and Provincial agencies and other organizations within the watershed.

Donna Adams, Hydro Superintendent for Domtar, provided information on Water Management during 2008. Lee Sochasky, St. Croix International Waterway Commission (SCIWC), provided an update and overview of the work of the International Waterway Commission in the areas of fisheries, water quality and recreational uses of the waterway. Bill Richards, Environment Canada, made a presentation on climate change scenarios for the St. Croix River basin from a meteorological perspective. Forest Bell and Tricia Rouleau, FB Environmental, provided a presentation on the recently completed draft of the "St. Croix River: State of the Watershed Report" which was well received by all. Meeting participants were generally pleased with the presentations as well as the work of the Board and role of the IJC over the past year.

1.5 Annual Site Visit of Facilities in the Basin

Board members met with NB Power officials early on the morning of August $20^{\text {th }}$ to review the Milltown dam operations. Board members then met with Domtar officials in
the Woodland Mill at Baileyville, Maine, later in the morning followed by a visit to the Forest City and Grand Falls dam sites. Visit notes and information describing the dams is provided in Appendix 2. The Board visits the dam sites annually to ensure the dams are operated in compliance with the IJC orders of approval for flows and levels. (See Section 2.) It is the responsibility of the dam owners, operators and appropriate jurisdictional agencies to conduct the necessary dam inspections and maintenance to ensure the safety and security of the dams.

1.6 Policy of the Board Regarding Dam Regulation

In accordance with its mandate from the IJC, the Board leaves the control of operation of the dams at Forest City, Vanceboro, and Grand Falls (owned and operated by Domtar, Inc.), and Milltown (owned and operated by New Brunswick Power) in the owners' hands.

During the reporting period, the Board reviewed conditions prevailing in the river by the following means: a continuous record of water elevations of East Grand Lake and continuous record of discharge below Forest City Dam; a continuous record of water elevations of Spednic Lake and a continuous record of discharge at Vanceboro; a continuous record of water levels above the dam at Grand Falls; a continuous record of discharge at Baring, Maine; and monthly reports received from New Brunswick Power indicating daily forebay elevations obtained during regular work days at the Milltown Dam and water level data from a continuous monitoring station in the head pond at Milltown operated by Environment Canada. Data are discussed in Section 2 of this report and summarized in Tables and Figures in the Appendices.

2.0 MANAGEMENT OF THE WATER LEVELS AND FLOWS

2.1 Summary

In 2008, the annual mean water level at East Grand Lake was 131.962 metres (432.95 feet), which is higher than the long term mean value of 131.793 metres (432.39 feet).

The annual mean flow from the lake at Forest City Stream was $8.26 \mathrm{~m}^{3} / \mathrm{s}$ (292 cfs), 31% higher than the long term mean value of $6.31 \mathrm{~m}^{3} / \mathrm{s}$ (223 cfs).

The annual mean water level for the year at Spednic Lake was 116.689 metres (382.84 feet), which is higher than the long term mean value of 116.284 metres (381.51 feet).

The annual mean flow as recorded at Vanceboro was $27.3 \mathrm{~m}^{3} / \mathrm{s}$ (964 cfs), 34% higher than the long term mean of $20.4 \mathrm{~m}^{3} / \mathrm{s}$ (720 cfs).

The annual mean flow at Baring was $93.8 \mathrm{~m}^{3} / \mathrm{s}$ (3310 cfs), which is 29% higher than the long term mean at Baring of $72.6 \mathrm{~m}^{3} / \mathrm{s}$ (2560 cfs).

2.2 East Grand Lake Reservoir and Discharges Below Forest City Dam

During the period from January 1 to December 31, the reservoir was operated between a maximum daily mean water level of 132.475 metres (434.63 feet) on $2^{\text {nd }}$ of May and a minimum daily mean of 131.469 metres (431.33 feet) on $25^{\text {th }}$ of October.

The maximum lake level as prescribed by the Commission's Order is 132.570 metres (434.94 feet): the minimum is 130.496 metres (428.14 feet). The Order was maintained throughout the year. The daily mean elevations are presented in Table I and depicted in Figure I of the Appendix.

Table II and Figure II of the Appendix presents the daily mean discharges below the Forest City Dam at the outlet of East Grand Lake for 2008. The maximum daily mean for the reporting period was $27.4 \mathrm{~m}^{3} / \mathrm{s}$ (968 cfs) on $14^{\text {th }}$ of March and the minimum daily mean was $2.24 \mathrm{~m}^{3} / \mathrm{s}$ (79.1 cfs) on $30^{\text {th }}$ of July. The mean discharge for the year was $8.26 \mathrm{~m}^{3} / \mathrm{s}$ (292 cfs). The Commission's Order of $2.12 \mathrm{~m}^{3} / \mathrm{s}(75 \mathrm{cfs})$ as a minimum flow was maintained throughout the year.

2.3 Spednic Lake Reservoir and Discharges below Vanceboro Dam

During the year, levels in the Spednic Lake reservoir, ranged from a maximum daily mean of 117.529 metres (385.59 feet) on $5^{\text {th }}$ of May, to a minimum daily mean of 115.705 metres (379.61 feet) on $7^{\text {th }}$ of April.

The maximum limit specified in the Commission's Order is 117.610 metres (385.86 feet). The allowable minimum level is 113.233 metres (371.50 feet) for the period January 1 to 30 April and 1 October to December 31 inclusive, and 114.757 meters (376.50 feet) for the period 1 May to 30 September inclusive. These orders were maintained throughout the year. The daily mean elevations for the Spednic Lake Reservoir during the year are presented in Table III and depicted in Figure III of the Appendix.

The maximum daily mean discharge recorded from the outflow at the reservoir at Vanceboro was $81.3 \mathrm{~m}^{3} / \mathrm{s}$ (2870 cfs) on $18^{\text {th }}$ of March and the minimum daily mean discharge recorded was $6.37 \mathrm{~m}^{3} / \mathrm{s}$ (225), on 26 of April. The Commission's Order of a minimum flow of $5.66 \mathrm{~m}^{3} / \mathrm{s}$ (200 cfs) was maintained throughout the year. Daily mean discharges are presented in Table IV and depicted in Figure IV of the Appendix.

2.4 Water Levels above Grand Falls Dam

Table V of the Appendix and Figure V include a list of the water level elevations of the headpond above the Grand falls Dam. The recorded maximum daily mean elevation was 61.958 metres (203.27 feet) on $2^{\text {nd }}$ of October and the minimum recorded elevation was 61.643 metres (202.24 feet) on $9^{\text {th }}$ of December. The maximum prescribed elevation of 62.106 metres (203.76 feet), as set by the Commission, was not exceeded at any time during the year.

2.5 Discharges at Baring, Maine

Table VI of the Appendix and Figure VI presents and depicts the daily mean discharges of the St. Croix River at Baring, Maine. The mean discharge for the report period was $93.8 \mathrm{~m}^{3} / \mathrm{s}$ (3310 cfs). The maximum daily mean was $326 \mathrm{~m}^{3} / \mathrm{s}\left(11500 \mathrm{cfs}\right.$) on $13^{\text {th }}$ of December. The minimum daily mean was $24.4 \mathrm{~m}^{3} / \mathrm{s}(862 \mathrm{cfs})$ on $16^{\text {th }}$ of July. Domtar
met the systems historic minimum low flow target of $21.2 \mathrm{~m}^{3} / \mathrm{s}$ (750 cfs).

2.6 Headwater Elevations above Milltown Dam

Table VII and Figure VII of the Appendix present and depict daily water elevations in the forebay of the NB Power Corporation plant at Milltown, New Brunswick. In 2007, Environment Canada established this water-level and water quality continuous monitoring station. The supplied data for 2008 water levels was extracted from this gauging station located in the head pond.

3.0 WATER QUALITY

3.1 USGS Milltown Monitor

Water-quality values for the St. Croix River at the Milltown monitor were within the extreme values for the period of daily record during the summer of 2008 based on record since September 1969. Values were above the water-quality objectives for the river. The maximum dissolved oxygen value recorded was $9.3 \mathrm{mg} / \mathrm{L}$ on September 26 and 27; the minimum dissolved oxygen value recorded was $6.2 \mathrm{mg} / \mathrm{L}$ on July 18, and 20 (which correspond closely to the maximum and minimum water temperatures respectively). Minimum dissolved oxygen levels corresponded closely with the lowest flows during the summer. The USGS Milltown monitoring station is located at the international bridge crossing at Mill City, Maine about 3000 ft . (914 m) above the New Brunswick Power Milltown Dam.

St. Croix River at Milltown, Station \# 01021050 Water-Quality Monitor, June - September 2008

Dissolved Oxygen (mg/L)
IJC objective $=5.0 \mathrm{mg} / \mathrm{L}$ minimum

	June	July	August	Sept.
Maximum	9.1	7.7	8.0	9.3
Minimum	6.6	6.2	6.5	7.4
Mean	8.1	7.0	7.4	8.3

Water Temperature (degrees centigrade)				
	June	July	August	Sept.
Maximum	22.7	26.9	25.0	22.5
Minimum	15.3	21.0	19.9	15.0
Mean	19.5	24.4	21.7	18.5

	pH (standard units)			
	June	July	August	Sept.
Maximum	7.0	7.0	7.0	7.0
Minimum	6.6	6.8	6.6	6.5
Median	6.8	6.9	6.7	6.8

Specific conductance (microsiemens per centimeter at 25 C)				
	June	July	August	Sept.
Maximum	101	122	94	83
Minimum	51	66	55	49
Mean	72	96	66	67

3.2 Environment Canada Monitoring Stations - Forest City and Milltown

Environment Canada, in partnership with the New Brunswick Department of the Environment, currently maintains two real-time water quality monitoring stations on the St. Croix River system. The first location is at the outlet of the East Grand Lake dam in Forest City, Maine, and the second is at the Milltown dam in Milltown (St. Stephen) New Brunswick. These real-time stations are visited at regular intervals (every 4-5 weeks) to re-calibrate the measuring devices and to collect a grab sample for surface water quality analysis. The real-time water quality parameters measured and reported are: Temperature, Dissolved Oxygen, pH, Specific Conductance, and Turbidity.

Real time monitoring allows an observer to assess several river water quality parameters quickly at any particular instant in time. This can alert managers to sudden changes in the characteristics of the river and relate them to particular events such as rapid spilling of water, accidental discharges from industry, severe weather events or remote introduction of atmospheric or other pollutants which might threaten the health of aquatic organisms or humans using the river. It could also allow responsible agencies to take rapid intervention to correct the problem.

3.2.1 Interpretation of Real-Time Monitoring Data

Monthly summaries of the data and yearly charts from these two stations for each parameter are presented in Appendix 5. The Environment Canada (EC) station is located just above the dam at a depth of $6-10 \mathrm{ft}$. The EC station and the USGS station reported in Section 3.1 above monitor water quality in the "urban" area below Baileyville but generally above St. Stephen/Calais.

During 2008, the real-time water quality parameters measured in one of the sources of the St. Croix River (Forest City, ME) are very similar to those measured just above the estuarine portion of the St. Croix River (Milltown, NB) for Temperature and Dissolved Oxygen. The values for pH are slightly lower at the Milltown station. The range of Specific Conductance values at Milltown is much larger (20 to $114 \mathrm{uS} / \mathrm{cm}$) than at Forest City (28 to $36 \mathrm{uS} / \mathrm{cm}$). There were a few high turbidity events at Milltown whereas turbidity values at Forest City remained below 5 throughout the year. The reasons for these differences could reflect the impact of tributaries draining into the St. Croix between the two stations, changes in the geology in the lower part of the St. Croix Watershed, industrial inputs, and an increase in urbanization in the lower part of the St.

Croix River Watershed. More than likely, the changes in water quality are the result of a combination of the above sources.

3.2.2 St. Croix River at Forest City, ME

The real-time water quality station operated without problems for most of the year except for most of April when the water level was dropped a few days after the station had been visited. This caused the monitoring probe to be out of the water until the next visit in early May. Data for April are therefore not available. The highest Dissolved Oxygen value was recorded on January $10(14.1 \mathrm{mg} / \mathrm{L})$ and the lowest value recorded on August $2(7.6 \mathrm{mg} / \mathrm{L})$. Dissolved Oxygen values for the entire year remained above the Canadian Water Quality Guideline for the Protection of Aquatic Life of $6.5 \mathrm{mg} / \mathrm{L}$.

3.2.3 St. Croix River at Milltown, NB

The real-time water quality station operated without major problems for the entire year. The highest Dissolved Oxygen value was recorded on December 27 ($14.9 \mathrm{mg} / \mathrm{L}$) whereas the lowest value was recorded on July 18 ($7.4 \mathrm{mg} / \mathrm{L}$). All Dissolved Oxygen values for 2008 were above the Canadian Water Quality Guideline for the Protection of Aquatic Life of $6.5 \mathrm{mg} / \mathrm{L}$.

3.2.4 Interpretation of Monthly Grab Samples

Staff from Environment Canada's Water Quality Monitoring Group along with staff from the New Brunswick Department of the Environment visited each real-time monitoring location on a monthly basis. During each of these visits, the multi-parameter sonde was removed from the water and taken off-site for cleaning and calibration. The following day, the newly calibrated sonde was re-deployed at the site and grab samples were collected for analysis at Environment Canada's Atlantic Environmental Testing Laboratory located in Moncton, NB. This laboratory is accredited by the Canadian Association for Environmental Analytical Laboratories (CAEAL) for all parameters reported here.

St. Croix River at Forest City, ME

The range of results for each parameter measured is shown in the Appendix 5 alongside their applicable guideline for the protection of aquatic life No parameter
exceeded their applicable guideline during the year 2008.

St. Croix River at Milltown, NB

The range of concentrations for each parameter measured is shown in the Appendix 5 alongside their applicable guideline for the protection of aquatic life. Three parameters exceeded their applicable guideline.

- Extractable Aluminum exceeded the CCME (Council of Canadian Ministers of the Environment) guideline of $100 \mathrm{ug} / \mathrm{L}$ in 7 out of 10 samples collected in 2008 whereas Dissolved Aluminum exceeded the CCME guideline of $100 \mathrm{ug} / \mathrm{L}$ in 5 out of 9 samples. Elevated levels of Aluminum are fairly common in areas of Atlantic Canada although the aquatic life seems to be in good health. This is believed to be because most of the Aluminum in Atlantic Canada rivers is complexed and therefore not bio-available to aquatic life. Preliminary work currently being conducted by Environment Canada supports this theory and in fact, for the few samples collected from the St. Croix River, the concentration of free Aluminum was below 10 ug/L.
- Phosphorous; one result was above the BC MOE (British Columbia Ministry of the Environment) guideline on July 7, 2008.
- Dissolved Zinc concentration exceeded the Dodds et.al. guideline on April 29, 2008.
- Extractable Zinc concentrations exceeded the Dodds et.al. guideline on January 9 and September 24, 2008.

4.0 STATUS OF POLLUTION ABATEMENT

4.1 Combined Sewer Overflows

Combined sewer systems are designed to transport both sanitary sewage and storm water in a single pipe to treatment facilities. The capacity of these systems may be exceeded in periods of heavy rainfall or wet weather resulting in direct discharges of untreated wastewater into receiving environments. These overflows are referred to as combined sewer overflows (CSOs) and have occurred on the St. Croix River from time
to time leading to bacterial contamination and health concerns. The International St. Croix River Watershed Board has encouraged State, Provincial and municipal officials to address such problems and is generally pleased with progress over the past several years. A workshop on CSOs in May, 2008, helped to inform both Canadian and U.S. agencies on shared interests and ideas for solving this problem.

The City of Calais, which has 5 combined sewer outfalls, has embarked upon a 10 year plan, begun in 1997, to eliminate these CSOs. As a result, there has been an approximate reduction of CSO events from pump stations of 89\% since 2003.

The Town of St. Stephen currently has 28 combined sewer outfalls with 11 located along the riverfront. The town also has a plan, which is being carried out as resources become available, to eliminate CSOs from their sewer system. Given the high costs associated with the elimination of CSOs, efforts to deal with this issue are, of necessity, being made over a long term planning horizon.

4.2 Maine

The Board is pleased to report that the Town of Baileyville continues to work on their inflow and infiltration plan approved by the Maine DEP. No bypasses were reported during the last year, 2008.

The City of Calais continues to work on their long-term Combined Sewer Overflow Reduction Plan. Domtar continues to manufacture pulp, but is not making paper which has reduced their discharge flow to the River. Their wastewater discharge remained within their licensed limits.

4.3 New Brunswick

Wastewater treatment upgrading in communities along the New Brunswick side of the St. Croix River has been stimulated by the advancement of the NB Water Classification Program which has focused government efforts in meeting high provincial standards for water quality.

McAdam: The McAdam waste-water treatment plant continues to meet the effluent requirements of the Province of New Brunswick. Nevertheless, the town system bypasses approximately 48 million gallons each year due to infiltration which threatens
water quality in the receiving waters of Waklehegan Lake. The town has hired a consultant to identify problem areas which the town can then start to address.

St. Stephen: The new aerated lagoon along Dennis Stream operates within the annual effluent limits of $20 \mathrm{mg} / \mathrm{L}$ for BOD (biological oxygen demand) and SS (suspended solids) and is equipped with disinfection which is effective in treating the municipal and industrial wastewater. The town has a progressive plan underway to address the remaining problems with their system.

Champlain Industrial Park: The extended aeration facility treats the domestic wastewater of approximately 85 employees as well as the industrial wastewater from the industrial park. At its current capacity, it continues to meet provincial requirements.

East Coast Village Mobile Home Park: The facultative lagoon treats the domestic wastewater of the 58 mobile homes in the park. The facility discharges treated effluent to the marshy headwaters of Meadow Brook. This current situation will eventually be resolved by extending the services from the town of St. Stephen.

DFO Biological Station: Fisheries and Oceans Canada (DFO) has been planning for some time a replacement of the main laboratory and office space at the site which will also include connection to the services from the municipality of St. Andrews. There has been no change in the status of this situation.

Huntsman Marine Science Centre: The Huntsman Marine Science Centre has a trickling filter wastewater treatment system to service the laboratory and office complex. Connection to St. Andrews would coincide with any such change to the DFO station.

Oak Bay Park: The Oak Bay Campground uses a trickling filter system to treat the domestic wastewater from 110 campsites prior to discharging the treated disinfected effluent to Oak Bay. It is expected that this establishment will be decommissioned in the near future.

5.0 FISHERIES

5.1 Anadromous Fisheries

The St. Croix Fisheries Steering Committee, established in 1983 to provide a forum for inter-agency collaboration on the management and restoration of diadromous fisheries in the watershed, continues to provide international oversight among fisheries agencies on anadromous and other fisheries in the system. The Board is an observer on this committee.

Alewives (Alosa pseudoharengus) and Atlantic salmon (Salmo salar) entering the St. Croix River have been monitored at a research trap at the Milltown dam since 1981. This head-of-tide dam is owned by the New Brunswick Power Corporation (NB Power). The fishway and research trap are located on the New Brunswick side of the structure and are under the jurisdiction of the Canada Department of Fisheries \& Oceans (DFO).

Since 2007, due to funding constraints, the Milltown research trap has been operated only during the alewife spawning run. The St. Croix International Waterway Commission (SCIWC) conducts this assessment under cooperative agreements and/or partnerships with DFO, NB Power, the U.S. Fish \& Wildlife Service (USFWS), the Maine Department of Marine Resources (DMR), the New Brunswick Department of Natural Resources and the Atlantic Salmon Federation.

In 2008, the Milltown fishway and research trap were activated on May 6 and the research trap was operated until July 3. During these nine weeks, a total of 12,261 alewives were recorded, including 11,162 of these in a six hour period on June 5. This was the largest return of that species since 1999. In 2007, only 1,294 alewives were counted. No Atlantic salmon were recorded at the trap during this period in 2008, however, five other fish species were counted in small numbers. These included: 21 white suckers, 7 smallmouth bas, 4 brook trout, 1 landlocked salmon and 1 American eel. After July 3, the Milltown fishway remained open to undocumented fish passage and was operated under the management of NB Power.

The 2008 St. Croix alewife run of 12,261 fish was the highest since 1999, although
returns in 2005-2006 approached this number. Factors that may have contributed to the higher 2008 return, relative to the last decade, are the influence of DFO's trucking of alewives from Milltown to spawning habitat in Woodland Flowage (2001-2007) and a relatively strong alewife return five years earlier in 2003 (five-year old fish typically make up the majority of the St. Croix spawning run). The size of the St. Croix alewife run declined incrementally from the mid-1990s to the early 2000s, following Maine's closure of the St. Croix's Woodland dam fishway to migrating alewives in 1995. The lowest return, in 2002, was 900 fish. Since then, with the exception of 2004 (1299 fish) and 2007 (1294 fish), the run has increased, presumably due to DFO's trucking of fish to the Woodland Flowage. It should be noted that the Board identified alewives as one of its major environmental health indicators in its 2008 State of the St. Croix Watershed report.

During 2008, some progress was made toward addressing a 13-year dispute over the passage of sea-run alewives through Maine fishways at the Woodland and Grand Falls dams to historic spawning grounds upstream. In April 2008, the Maine Legislature voted to remove the state's alewife passage barrier at Woodland (this was done in time for the 2008 alewife run) and the Legislature's Marine Resources Committee directed state agencies to work with the Passamaquoddy Tribe to resolve outstanding issues regarding fish passage at Grand Falls. At year end, the Tribe has yet to respond to repeated agency requests to meet on this issue. While some progress has been achieved, the Board is disappointed with the current impasse and will continue to support the restoration of alewife access to the mid portion of the St. Croix watershed.

5.2 Shellfish Harvesting

Since briefly being opened to shellfishing under a conditional harvest plan in 1999, Oak Bay was not reopened until a three year agreement (2005-2008) was signed in November, 2005 with a view to reactivate a conditionally approved shellfishery along the eastern portion of the bay beginning in 2006. The latter area was opened for harvesting the first week of March, 2006 but was closed soon after due to excessive rainfall and/or elevated bacterial densities in clams.

Depuration harvesting began in 2005 within the western portion of the Bay and continued into 2006. Although permission was granted for depuration harvesting in much of Oak Bay in 2007 and 2008, there was no commercial uptake of the option to carry out depuration harvesting at that time. The area was last surveyed by

Environment Canada for bacterial contamination in 2007 (3 runs). Subsequent monitoring may be required to delineate "prohibited" zones depending on the status of sewage treatment plants in the area. Classification of Oak Bay may change with the projected closure of the Oak Bay campground and decommissioning of the treatment plant there.

Shell Fish Harvesting - Figure showing how area was managed by DFO under MOU (2005-2008)

6.0 WATERSHED INITIATIVES

6.1 Work Plan 2009-2013

The Board is considering a number of potential projects to be included in a 5 year work plan. Projects considered at the Board's meeting in November 2008 included:

- Study of extent of impervious surfaces in the watershed.
- Bathymetry of impoundments and/or estuary.
- Develop Stream Stats Application for the St. Croix Watershed.
- St. Croix Science Forum - Contractor for logistics \& workshop report.
- Analysis and Interpretation of existing lake waters quality data.
- Recreational user survey.
- Continue modeling efforts.
- Create GIS map of all point discharges and non-point sources in the watershed.

The Board plans to review the five year work plan in spring 2009 and finalize it at the June 2009 Board meeting. Performance of projects will be dependent on availability of resources to conduct the projects.

6.2 Special Study Efforts - 2008

The Board conducted a special meeting/workshop on Combined Sewage Outflows (CSO) and appropriate follow up in May 2008. This resulted in a fruitful exchange of information, ideas and methodologies for addressing this serious cause of pollution to the River.

The Board was pleased to release the St. Croix River: State of the Watershed Report in November 2008. This report, prepared for the International St. Croix Watershed Board and the International Joint Commission by FB Environmental of Portland, Maine, represents the completion of a major long-term objective of the board. It is designed around a specific set of watershed indicators which illustrate the quality of various environmental components such as water, land, fisheries, wildlife and plants and social and economic elements within the watershed. It deals with various factors that influence the state of the watershed and the governance structures and local activities aimed at protecting the state of the watershed. The State of the Watershed report was
made possible through the cooperation of a wide range of contributions from various organizations and agencies in Canada and the U.S. Of particular mention is the St. Croix International Waterway Commission which worked closely with the board and FB Environmental to bring data and other material together, and the IJC which helped fund the project. The efforts of all the St. Croix Board members and some 38 individual contributors are acknowledged.

In addition, a watershed rainfall - runoff modeling final report was completed in June 2008. A final report for the St Croix River drainage area and stream network harmonization pilot project was completed in August 2008.

7.0 OTHER DEVELOPMENTS IN THE WATERSHED

7.1 Maine FERC dam re-licensing

Domtar Maine Corp. is the owner of the Forest City Dam (Forest City Project) and the West Grand Lake and Sysladobsis Dams (West Branch Project) on the St. Croix River system, which are currently undergoing U.S. Federal Energy Regulatory Commission re-licensing. The Forest City Dam crosses the international boundary. The West Grand and Sysladobsis Dams are located entirely in Maine. Both projects are non-generating water storage dams and are licensed with U.S. Federal Energy Regulatory Commission (FERC). These FERC licenses have expired and Domtar, in March 2006, filed with FERC to renew. In May, 2006, FERC approved the use of the traditional licensing process for both these projects. In 2007, Domtar worked on studies related to the relicensing efforts. In 2008, Domtar filed the draft licences and met with stakeholders to discuss the Draft License applications. Final license applications will be filed on or before March 19, 2009. It is anticipated that a FERC license could be issued before the end of 2009 or early 2010.

7.2 Maine LNG Facilities Proposals

Two proposals to develop LNG terminals on the U.S. side of the St. Croix River Estuary have advanced within the U.S. Federal Energy Regulatory Commission (FERC) regulatory process. They include a proposal by Downeast LNG Inc of New York for a terminal at Robbinston, Maine, and a proposal by Calais LNG Project to establish a

LNG terminal at Red Beach, Maine. Robbinston is located near the mouth of the St. Croix River and across the river from St. Andrews, New Brunswick while Red Beach is approximately 5 km upstream opposite Bayside, NB. A recent report by the U.S. Coast Guard has approved the tanker shipping route proposed by Downeast LNG with stringent recommendations for risk mitigation measures. Canada has stated that it will not permit LNG traffic through the Canadian waters of Head Harbor Passage. A proposal by a third LNG proponent has recently been withdrawn. The Board will follow further U.S. federal and state permitting activities by the remaining two LNG proponents.

Concerns associated with these proposals include environmental and human health risks, ecological impacts from construction activities, increased ship activity, interference with traditional fishing (these are particularly rich and productive marine waters) and recreational use of this busy and active waterway. Fog is frequently a navigational hazard in this area. In a letter dated April 7, 2006, the Canadian Ambassador to the U.S. conveyed his country's strong concerns with any passage of LNG vessels through Head Harbor Passage to access either LNG site. The Board will maintain an informal watching brief on this issue.

7.3 Bayside Quarry

Since 1998, Jamer Materials Ltd. has, under contract to the Province of New Brunswick, been extracting rock from the province's Champlain Industrial Park at Bayside to create new lots for industrial and port development. Jamer is owned in part by Vulcan Materials Ltd., one of the largest construction aggregate companies in the United States. The rock quarried at Bayside is shipped from the Bayside port to U.S. markets. In late 2008, the company applied to the Province of New Brunswick for re-zoning of 150 acres of land it has acquired across the highway from its current operation in order to develop a new, long-term quarry at that location.

It plans to move rock from the new site via a road tunneled under Highway 127 to a new rock crushing and export facility it would construct in the current industrial park. While assurances have been made by the Company to protect the St. Andrews water supply and to install state-of-the art treatment facilities to prevent runoff issues, there is still a great deal of concern by local residents. The new quarry is proposed to operate for a period of $30-50$ years.

Of concern to the IJC Board, are recent reports that the current operation has had a negative affect on the local fish habitat by causing a build-up of siltation in the River adjacent to the quarry and port facility. In 2001, the Board had raised concerns over these kinds of issues and asked the Province that they and the company monitor the situation closely. Over its ten years of operation, however, there have been complaints of noise, dust and affected property values in addition to the loss of local scallop grounds. These continue to be a concern of residents on both the Canadian and U.S. sides of the River. Expansion of the current operation and development of a new quarry could exacerbate the situation. The International Waterway Commission has been particularly instrumental in working with the Province, local action groups and the company to address problems and institute appropriate planning for future development. The Board will maintain a close watch on further developments and discuss options it might take to ease conflicting outcomes at its meeting in June.

7.4 Navigable Waters Protection Act (NWPA) Revision

The Canadian Navigable Waters Protection Act (NWPA) of 1882 mandates the Government of Canada to undertake an assessment of the impacts on navigation and an environmental assessment of any structure or development proposed for a navigable waterway. The Government of Canada has been working to revise the NWPA over the past few years in order to remove regulatory impediments to development on or near such waters. The revised legislation could result in many smaller waterways being removed from "navigable" status. Proposed changes could have implications for boundary waters, such as those of the St. Croix River watershed, which could lose the important legislative protection from inappropriate development currently afforded by the NWPA regulations. While the NWPA is one of Canada's oldest pieces of legislation and may need revision, the Board is concerned that environmental protection of the St. Croix Watershed is not compromised in this process.

ACKNOWLEDGEMENTS

The International St. Croix River Watershed Board gratefully acknowledges the valuable input and efforts in support of this report provided by the following groups/ individuals and without which the preparation of this report would not be possible.

Lee Sochasky - St. Croix International Waterway Commission
Stephen Drost - New Brunswick Department of the Environment
Ed Logue - Maine Department of Environmental Protection
Paul Noseworthy - Environment Canada
James Caldwell - U.S. Geological Survey
Donald Bourgeois - Environment Canada
Don Walter - Environment Canada
Jay Beaudoin - Domtar Maine Corp.
Peter Johnson - Environment Canada
Peter Eaton - Environment Canada
Barbara Blumeris - U.S. Army Corps of Engineers

APPENDIX 1

SUMMARY - ORDERS OF APPROVAL \& BASIN MAP

SUMMARY - ST. CROIX RIVER ORDERS OF APPROVAL

INTERNATIONAL JOINT COMMISSION

9 November, 1915- For approval of a dam and power canal and the obstruction, diversion and use of the waters of the St. Croix River at Grand Falls in the State of Maine and the Province of New Brunswick: Maximum elevation 202.0 feet m.s.l.

3 October, 1923- Erection and repairs of fishways in the St. Croix River.
6 October, 1931- For the obstructions of the waters of the St. Croix River at Grand Falls in the State of Maine and the Province of New Brunswick. Increase in elevation to 203.5 feet m.s.l.

2 October, 1934- For the reconstruction of a dam across the St. Croix River from Milltown in the Province of New Brunswick to Milltown in the State of Maine.

15 October, 1965- For the construction of a storage dam in the St. Croix River at Vanceboro, Maine and St. Croix, New Brunswick:

Discharge from
Spednic Lake- 200 cfs (5.66 m3ls) minimum
Elevation of
Spednic Lake-
Between 1 October and 30 April-
371.50 feet (113.233 metres) minimum

Between 1 May and 30 September-
376.50 feet (114.759 metres) minimum

Discharge from
East Grand Lake-
Elevation of East Grand Lake-
385.86 feet (117.611 metres) maximum
Grand Lake-
434.94 feet (132.571 metres) maximum 427.94 feet (130.438 metres) minimum

16 November, 1982- For the reconstruction of the diversion dike in the St. Croix River near Baileyville, Maine.

Appendix 1 - page 2

APPENDIX 2
MILLTOWN, GRAND FALLS, VANCEBORO AND FOREST CITY DAMS

GENERAL DESCRIPTION OF MILLTOWN, GRAND FALLS, VANCEBORO \& FOREST CITY DAMS

Milltown Dam \& Fish Passage Facilities

The Milltown facility is located in Milltown, New Brunswick across the river from Calais, Maine and approximately one mile upstream from the international bridge between Calais and St. Stephen, New Brunswick. It consists of a powerhouse with 7 hydroelectric generating units (installed capacity is 3.96 MW), an upstream fish passage facility that goes from the lower pool around the left side of the powerhouse (looking downstream) to the upper pool. The spillway is located to the right of the powerhouse and has 6 openings with large wooden stop logs that can be removed or installed via a railed vertical lifting mechanism. Other sections of the spillway have been equipped with wooden flashboards that are meant to fail and increase the spillway's capacity during high flows. At the far end of the spillway, running perpendicular from the spillway to the right bank, is a gatehouse with 5 vertical lift gates used to control the forebay elevation. A wooden-chute downstream fish passage facility is located in the area between the spillway and the gatehouse.

Grand Falls Dam \& Fish Passage Facilities

Grand Falls Flowage Dam is approximately 8 miles upstream of the town of Baileyville, Maine and can store approximately 88,000 acre-feet of water. This dam has 9 steel tainter gates on the right of the spillway, and a concrete emergency spillway approximately 800 to 850 feet in length running from the concrete gatehouse and ending at the left shoreline. The gatehouse is located between the gates and the emergency spillway. A floating walkway allows access to the entire upstream length of the spillway. Lake levels are recorded by a gauging station on the right bank of the dam.

The downstream side of the emergency spillway/dam has a concrete face sloping at an angle of approximately 45 degrees, and supported by concrete buttresses along its length. The space between these buttresses has been enclosed with a pressuretreated timber log system. This log system was installed to minimize the temperature differential in the downstream face area during freezing conditions to reduce possible degradation of the concrete face.

Water is impounded behind Grand Falls Dam and delivered to the hydroelectric plant and fish passage facilities via a channel on the right side of the impoundment, approximately 1000 feet upstream of the dam.

Water flows to the turbines via three steel penstocks. A Denil fishway is located on the side of the hydroelectric plant. It is a concrete structure with a series of bays equipped with guide slots that allow for the installation of wooden V notched weirs to modify flows to levels acceptable for fish migration.

Vanceboro Dam \& Fish Passage Facilities

Vanceboro Dam consists of an earth embankment with a concrete gate structure and with rock filled gabions on the upstream face. The concrete structure is 69 feet (21 m) long, and contains a fishway and two tainter gates, each $22^{\prime}-6$ " (6.9 m) wide by 14 ' -6 " $(4.4 \mathrm{~m})$ high. These gates are operated by electrical cable lifts. The gate structure is located on the International Boundary line between the United States and Canada. Gate sill elevation is at 371.5 feet (113.23 m) NGVD. Normal full pond elevation is at 385.86 feet (117.61 m), with an impounded surface of 20,870 acres (84.5 km 2). There are approximately 221,200 acre-feet (0.27 km 3) of useable storage at normal full pond. The fishway is a vertical slot fish ladder and is on the left side of the dam and consists of 10 bays or pools. There are 5 vertical lift wooden gates to regulate flow through the ladder. The trash rack on the upstream face of the fish passage consists of steel bars spaced approximately 1 foot in the horizontal direction and 3 feet in the vertical.

Forest City Dam \& Fish Passage Facilities

Forest City Dam is a small timber crib rock filled structure with three wooden sluice gates operated with a wooden ratchet lever system that lifts the gates using a steel cable or steel chain. These gates have openings of 8 '-4" (2.54 m) and a sill elevation of 427.94 feet (130.44 m) NGVD. Full pond elevation is at elevation 434.94 feet (132.57 m) NGVD, and impounds 105,300 acre-feet (0.130 km 3) of water. The fishway is located on the left side (facing downstream) of the dam and consists of timber baffle system with an upstream timber trash rack. A gauging station, located immediately downstream on the right bank, measures stage, which is converted to discharge from East Grand Lake through use of a rating table. A second gauging station upstream measures the lake's water level.

FACITILY SITE VISITS IN 2008

Board members met with New Brunswick Power officials on the morning of August $20^{\text {th }}$ at the Milltown Dam in New Brunswick and participated in a site visit of the facility.

Board members met with Domtar Officials on August $20^{\text {th }}$ at the Woodland Mill at Baileyville, Maine and then Board members participated in site visits at Grand Falls and Forest City Dam sites. (Vanceboro Dam was not visited in 2008.)

Participants included in the Domtar meeting and facilities visits are shown below:

Name	Position/Representing
Pierre Trepanier*	IJC Commissioner/ Canadian Section
Sam Speck*	IJC Commissioner/ U.S. Section
Murray Clamen*	IJC staff
Tom McAuley*	IJC staff
Charles Lawson*	IJC staff
Willem Brakel	IJC Staff
Bill Appleby	St. Croix Board, Co-Chair, Canadian Section
Bill Ayer	St. Croix Board, Canadian Section
Charles LeBlanc	St. Croix Board, Canadian Section
Peter Johnson	Secretary, St Croix Board, Canadian Section
LTC Stephan Lefebvre	Representing COL Feir, Co-Chair, U.S. Section
Carol Wood	St. Croix Board, U.S. Section
Bob Lent *	St. Croix Board, U.S. Section
Barbara Blumeris	Secretary, St. Croix Board, U.S. Section
Jeff Babcock	New Brunswick Power Co.
Glen Hanscom	New Brunswick Power Co.
Donna Adams	Domtar Industries, Inc.
Jay Beaudoin	Domtar Industries, Inc

General Comments on Facilities

August 2008

Forest City Dam. Domtar reported that they continue to monitor the wooden fishway where some repairs were made in 2007. In 2007 these repairs included adding a dead man to prevent leaning of fish way and providing a new trash rack at the inlet to the fishway.

Photographs from August 2007

Vanceboro Dam. The Board did not visit Vanceboro Dam in 2008. Above are photographs from 2007 provided for general information purposes.

August 2008

Grand Falls Dam. The Board visited the Grand Falls Dam and viewed the Dam and associated facilities. During the Board site visit work was on-going by Domtar's contractor to maintain the trash racks and gates at the head pond to the hydropower facility. Domtar noted additional work is planned for Fall 2008 at the enclosed Bays downstream face of the spillway on the Canadian side and at the fishway adjacent to the hydropower facility.

August 2008
Milltown Dam. During the Board's annual site visits, it has been observed that there is a crack in the floor of the powerhouse near units $5 / 6 / 7$. This is not a new issue as the crack has been apparent since the 1980s. However, about five years ago NB Power reported to the Board that there was increased movement in the crack. At that time (2003) NB Power took actions to assess the situation and established initial procedures to prevent further movement of the wall. NB Power set up temporary heated hoarding on the outside face of the wall to prevent freezing and thawing action and has continued to use this method in 2008 . NB power will continue to monitor movement of the downstream wall and plans to have Acres International provide an inspection in Fall 2008 with particular attention to the stability of the wall.

APPENDIX 3

HYDROGRAPHS

APPENDIX 4

WATER LEVELS AND FLOWS

GRAND LAKE AT FOREST CITY
DAILY MEAN WATER LEVEL IN METRES FOR 2008
 ウフMウット
 $\stackrel{\neg}{\sim} N \sim \sim \sim n$

巧 红 도 巧 더 红 도 DEC
131.941
131.961
131.976
131.988
132.002

 ．
 $>$
8
$<$
$\bigcirc \leqslant \infty \circ$ Nレーナ サー
 $\begin{array}{lll}\text { न } \\ \text { ल } \\ \text { न } \\ \text { न } & \text { न }\end{array}$

ウゥウウウ

 ゥmmmm

サ N 0 N n \cdots

 132.098
132.146 132.174

 ＋
$\stackrel{\rightharpoonup}{n}$
\dot{H}
\dot{m}
\cdots $m \infty 0$
$N 0$
H
\cdots
\cdots
\cdots
m
\circ
0
0
0
0
0
\cdots
\cdots
$\stackrel{\Gamma}{5}$

n
\sim
ふた

\rightarrow

○ $\quad \mathrm{N}$

∞ にの $m \infty$

$\begin{array}{lll}m & \sigma & \infty \\ \infty & \infty & \infty \\ m & n\end{array}$

$m m m m m$
$\neg \sqcap \sqcap ウ$
Mm M m

 131.836
$131.836 \quad 132.005$ ． 011 N

み6 6 に

$$
\begin{aligned}
& \text { Mल M M M }
\end{aligned}
$$

| 4078.781 | 3951.103 | 4097.870 |
| :---: | :---: | :---: | :---: |
| 131.574 | 131.703 | 132.189 |
| 131.695 | 131.916 | 132.319 |
| 131.469 | 131.548 | 131.941 |
| | | |
| PROVISIONAL AND ARE SUPPLIED BY | | |

NOTES：THE DISCHARGE ARE PROVISIONAL AND ARE SUPPLIED BY
ENVIRONMENT CANADA IN COOPERATION WITH DOMTAR．

Maximum daily water level， 132.475 Metres On 2008－05－02
Minimum daily water level， 131.469 Metres On 2008－10－25

$\begin{array}{lllll}6 & 6 & 7 & 6 & 6 \\ 0 & 0 & 0 & 6 & 0 \\ \cdots & 0 & \cdot & 0 & \end{array}$ $\dot{m} \dot{N} \dot{N} \dot{N}$

248.04
8.00
21400
17.8
2.66

$$
\begin{aligned}
& \dot{m} \\
& \dot{\sim} \\
& \dot{-} \\
& \sim
\end{aligned}
$$

$$
\begin{aligned}
& 407.8 \\
& 13.6 \\
& 35200 \\
& 17.3 \\
& 10.5
\end{aligned}
$$

$$
\begin{gathered}
\infty \\
\sim N \\
\cdots
\end{gathered}
$$

লウゥ

$$
\begin{aligned}
& m \dot{H} \\
& m \dot{r} \\
& \dot{H}
\end{aligned}
$$

$$
\bigcirc \curvearrowleft \infty .
$$

$$
\begin{gathered}
\dot{H} \vec{H} \vec{H} \vec{H} \\
\text { 崩 }
\end{gathered}
$$

$$
\begin{array}{lllll}
0 \\
\dot{H} & 0 & 0 & 0 & 0 \\
H & H & H
\end{array}
$$

$$
\begin{aligned}
& \\
& \stackrel{+}{N} \\
& \stackrel{N}{N} \\
& \stackrel{N}{N}
\end{aligned}
$$

$$
\begin{aligned}
& 8.83 \\
& 23600 \\
& 18.2 \\
& 3.01
\end{aligned}
$$

$$
\begin{array}{llll}
N \infty & 0 & -1 & \ddots \\
N & 0 & 6 & 0 \\
\sim & \sim & \cdots
\end{array}
$$

$$
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned} 0
$$

$$
\begin{aligned}
& n \\
& n \\
& 0 \\
& 0 \\
& 0
\end{aligned} \infty
$$

$$
\begin{aligned}
& N \circ \\
& n \\
& n \\
& \infty \\
& \infty
\end{aligned} \dot{\sim}
$$

$$
\begin{array}{llll}
\infty & \infty & m & \circ \\
\infty & \infty & \infty & \infty \\
\dot{n} & \stackrel{n}{n} & \dot{n} & \dot{n}
\end{array}
$$

ம்ம் மi

$$
\cdots \stackrel{0}{0} \times \sim \underset{\neg}{\circ}
$$

$\stackrel{\sim}{\sim}$

 $\dot{\sim} \dot{\sim} \dot{N}$

	\bigcirc
\bigcirc	$\bigcirc \mathrm{O}^{\circ} \mathrm{N}$
	ค）${ }^{\circ}$ ．
	サへ

 89.67

 89.75Total dischargeMean dischargeMaximum daily

NIW	も88．9TI	9与E．9TI	9TI．9TI	ZS6．STI	もじ・9てT	9てL．9TI	ع66＊9TT	ITI＊LIT	GOL．GIT	8T6．9TI	LLG．9IT	てもし「9てT	NIW
XVW	698° LTI	0L6．9TI	しもぁ・9しT	88¢•9TI	LSL．9IT	200＊LTI	とてでしたT	6てS＊LTT	9SE＊LTI	9て8＊9TL	0ع8．9TT	ZLS＊9TI	XVW
NVEW	6てI＊LTI	ST9．9TT	L9E．9TT	T9T．9TT	LS9＊9TT	268．9TI	8TじしたT	L9 ${ }^{*}$ LTT	ててع•9TI	عとら・9TL	0TL．9TT	88ع．9TT	NH＇SW
TVLOL	¢86＊0ع9と	ち9も・86もを	988＊L09E	โع8＊も8もを	S6T．9T9E	999＊とて9と	TSS＊とTSE	$66 \tau \cdot 8 \varepsilon 9 \varepsilon$	¢S9＊68もを	ととら＊てT9を		ヵโ0．809ع	IVLOL
โع	万88．9TI		ع6E．9TT		も切•9IT	9てL．9TI		ITT＊LT		8T6．5TT		ZLS＊9TI	I¢
0ε	868.9 TI	0L6．9TI	も6と・9TT	てIT•9IT	9ても・9IT	TGL．9TI	L00＊LTT	切じしたT	9与E．LIT	6L6．9TI		ع9G＊9IT	0ε
6 て	عI6．9TI	096．9TI	てLE．9TT	S60．9IT	てSも．9IT	99L．9TI	ع66．9TT	8もし「LTI	ともでしLT	عと0＊9IT	てて8．9IT	299．9TI	62
8 8	Sع6＊9TI	IT6．9TT	LSE．9TT	9 T0．9TI	6Lも・9IT	ZLL．9TI	866.9 T	69 ［1LT	00て＊しTT	980．9TL	0ع8．9TT	ع9G＊9tI	82
Lて	296．9TI	988．9TI	0¢ع•9TT	2S6．STI	てTS．9TL	S8L．9TI	900° LTT	S8I＊LTI	SSI＊LTI	LعI•9IT	6て8．9TT	ESG＊9TL	Lて
9 2	200＊LTI	8ع8＊9IT	もてE•9LT	$096{ }^{\text {S }}$ LT	万万S．9IT	808＊9 ${ }^{\text {IT }}$	8T0＊LTI	L6I＊LTT	860° LTI	06I•9IT	てI8．9TT	LDG＊9IT	9 2
¢乙	ても0＊LIT	こT8．9TI	Lもと・9TT	L86．9TT	SSS．9tI	$6 \tau 8.9 \tau T$	仂 0 LTT	とてでしLT	TEO＊LTT	Sもて．9TT	$0 \tau 8.9 T \tau$	0ヵら＊9tT	Sて
もて	てLO＊LIT	もて8＊9IT	9LE．9TT	800＊9IT	S9G．9IT	LT8．9TI	990＊LTI	しもでしIT	TS6．9TT	86て．9TI	808.9 T	عとG＊9TT	もて
とて	6 TI＊LIT	8ع8．9TI	LOも．9TT	IE0．9TT	98G．9IT	切＊9 9 I	6S0＊LTI	とLでしTI	عऽ8．9TI	てSE．9IT	708．9TT	عてG＊9TI	とて
てて	69 LTI	¢ع8．9TI	もしょ・9しT	SSO．9IT	909．9IT	098．9TT	こLO＊LTI	9LでしTI	LSL．9TI	も0も・9で	26L．9TI	0tc＊9tT	てて
Iて	ع8I＊LIT	L08．9IT	8Lヵ・9IT	8L0．9IT	9て9＊9IT	あL8．9IT	I60＊LTI	て6で LIT	6S9．9IT	あSt．9IT	28L．9IT	IOS＊9IT	L乙
02	もてでしたI	68L．9TT	もても・9てT	760．9TT	8S9．9TI	S98．9TI	ع0t＊LTT	Lてを＊$\angle T \tau$	SSS．9TT	987．9TL	69L．9TT	06\％．9TT	02
6 T	โ9でしTI	もLL．9TI	8ても・9しT	0てI•9IT	L99．9IT	もし8＊9TT	STI＊LTI	0 ロと・LTT	もらも．9TT	9TS．9tI	SSL．9TT	9Lも・9てT	6τ
8 I	T0E＊LTT	60L．9TI	8عよ＊9IT	LSI．9IT	699．9IT	L88．9TI	8てI＊LTI	0SE＊LTT	عऽع．9IT	699．9TI	乙とL．9TT	もらも・9TT	8τ
LT	も¢と＊LIT	LS9．9TI	しもも・9しT	89I•9IT	269．9IT	S06．9TI	9عI＊LTI	L9 ${ }^{\circ} \mathrm{LIT}$	9¢て．9IT	0て9＊9IT	6TL．9TI	もとも・9โT	$L T$
9 I	て91＊LIT	S9S．9IT	乌で・9IT	¢8I．9IT	969．9IT	026．9IT	てもし「しIT	688＊LIT	08I•9IT	9¢9．9IT	てZL．9IT	6Iぁ＊9IT	9 I
ST	$69 \varepsilon^{\circ}$ LIT	70¢．9TI	0ても・9てT	S6I•9IT	ォTL．9IT	0も6．9TT	8GI．LTT	こ0も＊LTI	STI•9IT	269．9IT	LZL．9TT	フ0も・9โT	ST
もT	ठらع． LTT	88\％．9TI	0さも・9てT	88T•9TI	0ZL．9TI	6ع6．9TT	SLI＊LTT		¢S0．9TI	SてL．9tI	とてL．9TI	89を．9TT	¢T
$\varepsilon \tau$	0 TE＊LTI	08\％＊9TT	じゃ＊9しT	T0て．9TT	あとL．9IT	て\＆6＊9IT	66 T＊LT	もとも＊しTT	L86＊STT	ともL．9tT	SL9．9TI	8عと＊9IT	$\varepsilon \tau$
てI	$66 T$ LTT	8Lも．9TI	$80 \%^{\circ} 9$ TT	と0で9IT	LEL．9TI	Lも6．9TT	とてでしTI	てSも＊LTI	とI6．STI	あもし．9で	LS9．9TI	โTE．9TT	てT
IT	$9 \varepsilon I \cdot L T I$	L9才．9IT	$80 \square^{\circ} 9$ IT	9Iて＊9IT	8\＆L．9IT	ES6．9IT	もしでしIT	SLE＊LIT	6 ¢8＊STT	0SL．9IT	SS9．9IT	LLで9IT	［
$0 T$	LIT LIT	LEも．9TT	SOも．9TT	ऽعて．9LT	あもし．9IT	6S6．9TI	ع6I＊LTI	887° LTL	TLL．STT	S9L．9TL	ても9•91T	9¢て．9LT	0τ
6	もTI＊LT	9なも・9で	8LE．9TT	もてで9IT	LもL．9IT	切6．9TI	00でくTT	SOG＊LTI	6てL．STI	8LL．9TI	9ع9＊9IT	LEで9TI	6
8	9SI．LTI	ع6と．9TI	てLE．9IT	ZSて．9IT	9عL．9TT	あぁ6．9TI	88 ¢ LTT	ZOS＊LTI	をTL．STT	6もL．9TI	โع9．9TT	8てて＊9TI	8
L	0 OT＊LTV ${ }^{\text {O }}$	－68．91T	89と・9TT	も9て．9LT	ともL．9TT	8ヵ6．9tT	LLT＊LTT	もTS＊LTT	SOL．STT	LLL．9TI	0ع9．9TT	0てで9TI	L
9	STI＊LIT	9与E．9TT	9ぁを．9TT	8عて．9TT	TSL．9TI	8G6．9TI	OLI＊LIT	LZS＊LTT	عIL．STI	008．9TT	¢て9＊9IT	あてで9IT	9
G	あIT LIT	6乌ع．9TI	ててと・9IT	も9て．9IT	LSL．9IT	696.9 T	09 •LTI	6ZS＊LIT	0もし STI	ஏ08．9TI	¢T9．9TI	90て．9IT	G
万	880° LIT	89¢．9TI	86で9IT	て6で9IT	ZSL．9IT	¢86．9TI	LもT＊LTT	OZS＊LTI	091．STT	も08．9TT	$609 \cdot 9$ IT	86T•9TT	■
ε	0L0＊LTI	SLE．9TT	てもで9IT	¢TE．9IT	0عL．9IT	$686{ }^{\circ} 9$ IT	8てT＊LTI	LOS．LIT	T08＊STT	もT8．9IT	709．9TI	66T．9IT	ε
$乙$	ても0＊LIT	も6と・9TT	89I．9TT	ももと・9しT	LてL．9IT	T66．9TT	切しくたT	086＊LTT	ても8＊STT	9て8＊9IT	96S．9TI	あ8T•9TI	2
I	000° LTI	L0¢＊9しT	9 9T•9IT	88\＆ 9 TI	8TL．9TI	200＊LTI	6TI＊LTT	てとも＊LTT	てL8＊STI	6 T8．9TI	LLS．9IT	てもし「9てI	I
XVG	วヨ】	＾ON	山つO	d＇as	פก\％	Tnf	NOf	X $\forall W$	पdV	y⿴W	¢＇ココ	N甘¢	X $\forall \mathrm{C}$

-1
-1
-1

NIW	も88．9TI	9与E．9TI	9TI．9TI	ZS6．STI	もじ・9てT	9てL．9TI	ع66＊9TT	ITI＊LIT	GOL．GIT	8T6．9TI	LLG．9IT	てもし「9てT	NIW
XVW	698° LTI	0L6．9TI	しもぁ・9しT	88¢•9TI	LSL．9IT	200＊LTI	とてでしたT	6てS＊LTT	9SE＊LTI	9て8＊9TL	0ع8．9TT	ZLS＊9TI	XVW
NVEW	6てI＊LTI	ST9．9TT	L9E．9TT	T9T．9TT	LS9＊9TT	268．9TI	8TじしたT	L9 ${ }^{*}$ LTT	ててع•9TI	عとら・9TL	0TL．9TT	88ع．9TT	NH＇SW
TVLOL	¢86＊0ع9と	ち9も・86もを	988＊L09E	โع8＊も8もを	S6T．9T9E	999＊とて9と	TSS＊とTSE	$66 \tau \cdot 8 \varepsilon 9 \varepsilon$	¢S9＊68もを	ととら＊てT9を		ヵโ0．809ع	IVLOL
โع	万88．9TI		ع6E．9TT		も切•9IT	9てL．9TI		ITT＊LT		8T6．5TT		ZLS＊9TI	I¢
0ε	868.9 TI	0L6．9TI	も6と・9TT	てIT•9IT	9ても・9IT	TGL．9TI	L00＊LTT	切じしたT	9与E．LIT	6L6．9TI		ع9G＊9IT	0ε
6 て	عI6．9TI	096．9TI	てLE．9TT	S60．9IT	てSも．9IT	99L．9TI	ع66．9TT	8もし「LTI	ともでしLT	عと0＊9IT	てて8．9IT	299．9TI	62
8 8	Sع6＊9TI	IT6．9TT	LSE．9TT	9 T0．9TI	6Lも・9IT	ZLL．9TI	866.9 T	69 ［1LT	00て＊しTT	980．9TL	0ع8．9TT	ع9G＊9tI	82
Lて	296．9TI	988．9TI	0¢ع•9TT	2S6．STI	てTS．9TL	S8L．9TI	900° LTT	S8I＊LTI	SSI＊LTI	LعI•9IT	6て8．9TT	ESG＊9TL	Lて
9 2	200＊LTI	8ع8＊9IT	もてE•9LT	$096{ }^{\text {S }}$ LT	万万S．9IT	808＊9 ${ }^{\text {IT }}$	8T0＊LTI	L6I＊LTT	860° LTI	06I•9IT	てI8．9TT	LDG＊9IT	9 2
¢乙	ても0＊LIT	こT8．9TI	Lもと・9TT	L86．9TT	SSS．9tI	$6 \tau 8.9 \tau T$	仂 0 LTT	とてでしLT	TEO＊LTT	Sもて．9TT	$0 \tau 8.9 T \tau$	0ヵら＊9tT	Sて
もて	てLO＊LIT	もて8＊9IT	9LE．9TT	800＊9IT	S9G．9IT	LT8．9TI	990＊LTI	しもでしIT	TS6．9TT	86て．9TI	808.9 T	عとG＊9TT	もて
とて	6 TI＊LIT	8ع8．9TI	LOも．9TT	IE0．9TT	98G．9IT	切＊9 9 I	6S0＊LTI	とLでしTI	عऽ8．9TI	てSE．9IT	708．9TT	عてG＊9TI	とて
てて	69 LTI	¢ع8．9TI	もしょ・9しT	SSO．9IT	909．9IT	098．9TT	こLO＊LTI	9LでしTI	LSL．9TI	も0も・9で	26L．9TI	0tc＊9tT	てて
Iて	ع8I＊LIT	L08．9IT	8Lヵ・9IT	8L0．9IT	9て9＊9IT	あL8．9IT	I60＊LTI	て6で LIT	6S9．9IT	あSt．9IT	28L．9IT	IOS＊9IT	L乙
02	もてでしたI	68L．9TT	もても・9てT	760．9TT	8S9．9TI	S98．9TI	ع0t＊LTT	Lてを＊$\angle T \tau$	SSS．9TT	987．9TL	69L．9TT	06\％．9TT	02
6 T	โ9でしTI	もLL．9TI	8ても・9しT	0てI•9IT	L99．9IT	もし8＊9TT	STI＊LTI	0 ロと・LTT	もらも．9TT	9TS．9tI	SSL．9TT	9Lも・9てT	6τ
8 I	T0E＊LTT	60L．9TI	8عよ＊9IT	LSI．9IT	699．9IT	L88．9TI	8てI＊LTI	0SE＊LTT	عऽع．9IT	699．9TI	乙とL．9TT	もらも・9TT	8τ
LT	も¢と＊LIT	LS9．9TI	しもも・9しT	89I•9IT	269．9IT	S06．9TI	9عI＊LTI	L9 ${ }^{\circ} \mathrm{LIT}$	9¢て．9IT	0て9＊9IT	6TL．9TI	もとも・9โT	$L T$
9 I	て91＊LIT	S9S．9IT	乌で・9IT	¢8I．9IT	969．9IT	026．9IT	てもし「しIT	688＊LIT	08I•9IT	9¢9．9IT	てZL．9IT	6Iぁ＊9IT	9 I
ST	$69 \varepsilon^{\circ}$ LIT	70¢．9TI	0ても・9てT	S6I•9IT	ォTL．9IT	0も6．9TT	8GI．LTT	こ0も＊LTI	STI•9IT	269．9IT	LZL．9TT	フ0も・9โT	ST
もT	ठらع． LTT	88\％．9TI	0さも・9てT	88T•9TI	0ZL．9TI	6ع6．9TT	SLI＊LTT		¢S0．9TI	SてL．9tI	とてL．9TI	89を．9TT	¢T
$\varepsilon \tau$	0 TE＊LTI	08\％＊9TT	じゃ＊9しT	T0て．9TT	あとL．9IT	て\＆6＊9IT	66 T＊LT	もとも＊しTT	L86＊STT	ともL．9tT	SL9．9TI	8عと＊9IT	$\varepsilon \tau$
てI	$66 T$ LTT	8Lも．9TI	$80 \%^{\circ} 9$ TT	と0で9IT	LEL．9TI	Lも6．9TT	とてでしTI	てSも＊LTI	とI6．STI	あもし．9で	LS9．9TI	โTE．9TT	てT
IT	$9 \varepsilon I \cdot L T I$	L9才．9IT	$80 \square^{\circ} 9$ IT	9Iて＊9IT	8\＆L．9IT	ES6．9IT	もしでしIT	SLE＊LIT	6 ¢8＊STT	0SL．9IT	SS9．9IT	LLで9IT	［
$0 T$	LIT LIT	LEも．9TT	SOも．9TT	ऽعて．9LT	あもし．9IT	6S6．9TI	ع6I＊LTI	887° LTL	TLL．STT	S9L．9TL	ても9•91T	9¢て．9LT	0τ
6	もTI＊LT	9なも・9で	8LE．9TT	もてで9IT	LもL．9IT	切6．9TI	00でくTT	SOG＊LTI	6てL．STI	8LL．9TI	9ع9＊9IT	LEで9TI	6
8	9SI．LTI	ع6と．9TI	てLE．9IT	ZSて．9IT	9عL．9TT	あぁ6．9TI	88 ¢ LTT	ZOS＊LTI	をTL．STT	6もL．9TI	โع9．9TT	8てて＊9TI	8
L	0 OT＊LTV ${ }^{\text {O }}$	－68．91T	89と・9TT	も9て．9LT	ともL．9TT	8ヵ6．9tT	LLT＊LTT	もTS＊LTT	SOL．STT	LLL．9TI	0ع9．9TT	0てで9TI	L
9	STI＊LIT	9与E．9TT	9ぁを．9TT	8عて．9TT	TSL．9TI	8G6．9TI	OLI＊LIT	LZS＊LTT	عIL．STI	008．9TT	¢て9＊9IT	あてで9IT	9
G	あIT LIT	6乌ع．9TI	ててと・9IT	も9て．9IT	LSL．9IT	696.9 T	09 •LTI	6ZS＊LIT	0もし STI	ஏ08．9TI	¢T9．9TI	90て．9IT	G
万	880° LIT	89¢．9TI	86で9IT	て6で9IT	ZSL．9IT	¢86．9TI	LもT＊LTT	OZS＊LTI	091．STT	も08．9TT	$609 \cdot 9$ IT	86T•9TT	■
ε	0L0＊LTI	SLE．9TT	てもで9IT	¢TE．9IT	0عL．9IT	$686{ }^{\circ} 9$ IT	8てT＊LTI	LOS．LIT	T08＊STT	もT8．9IT	709．9TI	66T．9IT	ε
$乙$	ても0＊LIT	も6と・9TT	89I．9TT	ももと・9しT	LてL．9IT	T66．9TT	切しくたT	086＊LTT	ても8＊STT	9て8＊9IT	96S．9TI	あ8T•9TI	2
I	000° LTI	L0¢＊9しT	9 9T•9IT	88\＆ 9 TI	8TL．9TI	200＊LTI	6TI＊LTT	てとも＊LTT	てL8＊STI	6 T8．9TI	LLS．9IT	てもし「9てI	I
XVG	วヨ】	＾ON	山つO	d＇as	פก\％	Tnf	NOf	X $\forall W$	पdV	y⿴W	¢＇ココ	N甘¢	X $\forall \mathrm{C}$

NIW	も88．9TI	9与E．9TI	9TI．9TI	ZS6．STI	もじ・9てT	9てL．9TI	ع66＊9TT	ITI＊LIT	GOL．GIT	8T6．9TI	LLG．9IT	てもし「9てT	NIW
XVW	698° LTI	0L6．9TI	しもぁ・9しT	88¢•9TI	LSL．9IT	200＊LTI	とてでしたT	6てS＊LTT	9SE＊LTI	9て8＊9TL	0ع8．9TT	ZLS＊9TI	XVW
NVEW	6てI＊LTI	ST9．9TT	L9E．9TT	T9T．9TT	LS9＊9TT	268．9TI	8TじしたT	L9 ${ }^{*}$ LTT	ててع•9TI	عとら・9TL	0TL．9TT	88ع．9TT	NH＇SW
TVLOL	¢86＊0ع9と	ち9も・86もを	988＊L09E	โع8＊も8もを	S6T．9T9E	999＊とて9と	TSS＊とTSE	$66 \tau \cdot 8 \varepsilon 9 \varepsilon$	¢S9＊68もを	ととら＊てT9を		ヵโ0．809ع	IVLOL
โع	万88．9TI		ع6E．9TT		も切•9IT	9てL．9TI		ITT＊LT		8T6．5TT		ZLS＊9TI	I¢
0ε	868.9 TI	0L6．9TI	も6と・9TT	てIT•9IT	9ても・9IT	TGL．9TI	L00＊LTT	切じしたT	9与E．LIT	6L6．9TI		ع9G＊9IT	0ε
6 て	عI6．9TI	096．9TI	てLE．9TT	S60．9IT	てSも．9IT	99L．9TI	ع66．9TT	8もし「LTI	ともでしLT	عと0＊9IT	てて8．9IT	299．9TI	62
8 8	Sع6＊9TI	IT6．9TT	LSE．9TT	9 T0．9TI	6Lも・9IT	ZLL．9TI	866.9 T	69 ［1LT	00て＊しTT	980．9TL	0ع8．9TT	ع9G＊9tI	82
Lて	296．9TI	988．9TI	0¢ع•9TT	2S6．STI	てTS．9TL	S8L．9TI	900° LTT	S8I＊LTI	SSI＊LTI	LعI•9IT	6て8．9TT	ESG＊9TL	Lて
9 2	200＊LTI	8ع8＊9IT	もてE•9LT	$096{ }^{\text {S }}$ LT	万万S．9IT	808＊9 ${ }^{\text {IT }}$	8T0＊LTI	L6I＊LTT	860° LTI	06I•9IT	てI8．9TT	LDG＊9IT	9 2
¢乙	ても0＊LIT	こT8．9TI	Lもと・9TT	L86．9TT	SSS．9tI	$6 \tau 8.9 \tau T$	仂 0 LTT	とてでしLT	TEO＊LTT	Sもて．9TT	$0 \tau 8.9 T \tau$	0ヵら＊9tT	Sて
もて	てLO＊LIT	もて8＊9IT	9LE．9TT	800＊9IT	S9G．9IT	LT8．9TI	990＊LTI	しもでしIT	TS6．9TT	86て．9TI	808.9 T	عとG＊9TT	もて
とて	6 TI＊LIT	8ع8．9TI	LOも．9TT	IE0．9TT	98G．9IT	切＊9 9 I	6S0＊LTI	とLでしTI	عऽ8．9TI	てSE．9IT	708．9TT	عてG＊9TI	とて
てて	69 LTI	¢ع8．9TI	もしょ・9しT	SSO．9IT	909．9IT	098．9TT	こLO＊LTI	9LでしTI	LSL．9TI	も0も・9で	26L．9TI	0tc＊9tT	てて
Iて	ع8I＊LIT	L08．9IT	8Lヵ・9IT	8L0．9IT	9て9＊9IT	あL8．9IT	I60＊LTI	て6で LIT	6S9．9IT	あSt．9IT	28L．9IT	IOS＊9IT	L乙
02	もてでしたI	68L．9TT	もても・9てT	760．9TT	8S9．9TI	S98．9TI	ع0t＊LTT	Lてを＊$\angle T \tau$	SSS．9TT	987．9TL	69L．9TT	06\％．9TT	02
6 T	โ9でしTI	もLL．9TI	8ても・9しT	0てI•9IT	L99．9IT	もし8＊9TT	STI＊LTI	0 ロと・LTT	もらも．9TT	9TS．9tI	SSL．9TT	9Lも・9てT	6τ
8 I	T0E＊LTT	60L．9TI	8عよ＊9IT	LSI．9IT	699．9IT	L88．9TI	8てI＊LTI	0SE＊LTT	عऽع．9IT	699．9TI	乙とL．9TT	もらも・9TT	8τ
LT	も¢と＊LIT	LS9．9TI	しもも・9しT	89I•9IT	269．9IT	S06．9TI	9عI＊LTI	L9 ${ }^{\circ} \mathrm{LIT}$	9¢て．9IT	0て9＊9IT	6TL．9TI	もとも・9โT	$L T$
9 I	て91＊LIT	S9S．9IT	乌で・9IT	¢8I．9IT	969．9IT	026．9IT	てもし「しIT	688＊LIT	08I•9IT	9¢9．9IT	てZL．9IT	6Iぁ＊9IT	9 I
ST	$69 \varepsilon^{\circ}$ LIT	70¢．9TI	0ても・9てT	S6I•9IT	ォTL．9IT	0も6．9TT	8GI．LTT	こ0も＊LTI	STI•9IT	269．9IT	LZL．9TT	フ0も・9โT	ST
もT	ठらع． LTT	88\％．9TI	0さも・9てT	88T•9TI	0ZL．9TI	6ع6．9TT	SLI＊LTT		¢S0．9TI	SてL．9tI	とてL．9TI	89を．9TT	¢T
$\varepsilon \tau$	0 TE＊LTI	08\％＊9TT	じゃ＊9しT	T0て．9TT	あとL．9IT	て\＆6＊9IT	66 T＊LT	もとも＊しTT	L86＊STT	ともL．9tT	SL9．9TI	8عと＊9IT	$\varepsilon \tau$
てI	$66 T$ LTT	8Lも．9TI	$80 \%^{\circ} 9$ TT	と0で9IT	LEL．9TI	Lも6．9TT	とてでしTI	てSも＊LTI	とI6．STI	あもし．9で	LS9．9TI	โTE．9TT	てT
IT	$9 \varepsilon I \cdot L T I$	L9才．9IT	$80 \square^{\circ} 9$ IT	9Iて＊9IT	8\＆L．9IT	ES6．9IT	もしでしIT	SLE＊LIT	6 ¢8＊STT	0SL．9IT	SS9．9IT	LLで9IT	［
$0 T$	LIT LIT	LEも．9TT	SOも．9TT	ऽعて．9LT	あもし．9IT	6S6．9TI	ع6I＊LTI	887° LTL	TLL．STT	S9L．9TL	ても9•91T	9¢て．9LT	0τ
6	もTI＊LT	9なも・9で	8LE．9TT	もてで9IT	LもL．9IT	切6．9TI	00でくTT	SOG＊LTI	6てL．STI	8LL．9TI	9ع9＊9IT	LEで9TI	6
8	9SI．LTI	ع6と．9TI	てLE．9IT	ZSて．9IT	9عL．9TT	あぁ6．9TI	88 ¢ LTT	ZOS＊LTI	をTL．STT	6もL．9TI	โع9．9TT	8てて＊9TI	8
L	0 OT＊LTV ${ }^{\text {O }}$	－68．91T	89と・9TT	も9て．9LT	ともL．9TT	8ヵ6．9tT	LLT＊LTT	もTS＊LTT	SOL．STT	LLL．9TI	0ع9．9TT	0てで9TI	L
9	STI＊LIT	9与E．9TT	9ぁを．9TT	8عて．9TT	TSL．9TI	8G6．9TI	OLI＊LIT	LZS＊LTT	عIL．STI	008．9TT	¢て9＊9IT	あてで9IT	9
G	あIT LIT	6乌ع．9TI	ててと・9IT	も9て．9IT	LSL．9IT	696.9 T	09 •LTI	6ZS＊LIT	0もし STI	ஏ08．9TI	¢T9．9TI	90て．9IT	G
万	880° LIT	89¢．9TI	86で9IT	て6で9IT	ZSL．9IT	¢86．9TI	LもT＊LTT	OZS＊LTI	091．STT	も08．9TT	$609 \cdot 9$ IT	86T•9TT	■
ε	0L0＊LTI	SLE．9TT	てもで9IT	¢TE．9IT	0عL．9IT	$686{ }^{\circ} 9$ IT	8てT＊LTI	LOS．LIT	T08＊STT	もT8．9IT	709．9TI	66T．9IT	ε
$乙$	ても0＊LIT	も6と・9TT	89I．9TT	ももと・9しT	LてL．9IT	T66．9TT	切しくたT	086＊LTT	ても8＊STT	9て8＊9IT	96S．9TI	あ8T•9TI	2
I	000° LTI	L0¢＊9しT	9 9T•9IT	88\＆ 9 TT	8TL．9TI	200＊LTI	6TI＊LTT	てとも＊LTT	てL8＊STI	6 T8．9TI	LLS．9IT	てもし「9てI	I
XVG	วヨ】	＾ON	山つO	d＇as	פก\％	Tnf	NOf	X $\forall W$	पdV	y⿴W	¢＇コ	N甘¢	X $\forall \mathrm{C}$

St．CROIX RIVER AT VANCEBORO
DAILY MEAN DISCHARGE IN CUBIC METRES PER SECOND FOR 2008
on
$m \infty r \wedge m$

E
获

$\begin{aligned} & U \\ & \text { 덤 } \end{aligned}$		

NOV $\dot{\sim}$ 부N $\underset{\sim}{N}$

$\infty M \vee \bullet \Omega$
\cup
－
\square

$\because \cdot \vdash \cdot \backsim N$
！！！○！！ かん～～～

∇		8
－	∞	O
\cdots		$\underset{4}{4}$
$\stackrel{6}{\square}$		$\xrightarrow{4}$

$$
\stackrel{\circ}{N}
$$

$$
\dot{\sim} \dot{\sim} \stackrel{i}{\mathrm{~N}} \stackrel{0}{\mathrm{~N}} \stackrel{i}{\mathrm{~N}}
$$

GRAND FALLS FLOWAGE AT GRAND FALLS
DAILY MEAN WATER LEVEL IN METRES FOR 2008

－

 NOTES：WATER LEVELS ARE IN METRES AND ARE REFERENCED TO GEODETIC AND ARE SUPPLIED BY ENVIRONMENT CANADA IN COOPERATION A－PARTIAL DAY
DEC

．${ }^{6}$

B
8
Z

$\infty \infty \infty$ の の だ

E-
认ु चं
Hの○mの
ヘ

$\wedge m \infty \sim \infty$	O

ঞ̈ ऊं

$$
\dot{\beta}
$$

？

$$
\begin{aligned}
& \text { 品 } \\
& \underset{\Sigma}{1}
\end{aligned}
$$

$\stackrel{\rightharpoonup}{+}$
+
∞
.

$$
\begin{aligned}
& \circ \circ \\
& \circ \\
& \wedge \\
& \hdashline .
\end{aligned}
$$

से चं सें

$$
\begin{aligned}
& 61.679 \\
& 61.705
\end{aligned}
$$$\quad m m \sim N$

تें N
N
\sim
\sim
－
－
－
－
－

$$
\begin{array}{lll}
-1 & \infty \\
\\
\hline
\end{array}
$$

JAN
61.874
61.872
61.853
61.843
61.832

61.822| N |
| :---: |
| N |
| |
| |

61.745

\＆
葆

ST CROIX RIVER AT MILLTOWN DAM
DAILY MEAN WATER LEVEL IN METRES FOR 2008
$X \forall \square \quad$ ว马ด
 ウオMウゥ

$\stackrel{\bullet}{N} \sim \infty \stackrel{\infty}{N} \stackrel{-1}{\infty}$ TOTAL
MEAN
品 NOTES：WATER LEVELS ARE IN METRES AND ARE REFERENCED TO GEODETIC T甘NOISIAOY

ब

《 ब

$\begin{array}{ll}\text { m m m n } \\ \cdots & =1\end{array}$ n
∞
n
\cdots
SEP
SEP

1	1
1	1

 AND ARE SUPPLIED BY ENVIRONMENT CANADA．
A－PARTIAL DAY

APPENDIX 5

WATER QUALTIY DATA

Results from 2008 Monthly Grab Samples				
				Aquatic Life
Parameter	Units	Forest City, ME	St. Stephen, NB	Guidelines ${ }^{1}$
ALKALINITY TOTAL CACO3	MG/L	<20-<20	<20-<20	
ALUMINUM Diss.	UG/L	6-17	56-162	100
ALUMINUM Extr.	UG/L	6-20	74-197	100
ANTIMONY Diss.	UG/L	<0.1-<0.1	<0.1-<0.1	
ANTIMONY Extr.	UG/L	<0.1-<0.1	<0.1-<0.1	
ARSENIC Diss.	UG/L	0.2-0.3	0.3-0.6	5
ARSENIC Extr.	UG/L	0.2-0.4	0.3-0.7	5
BARIUM Diss.	UG/L	2-2	4-13	
BARIUM Extr.	UG/L	2-3	5-15	
BERYLLIUM Diss.	UG/L	$<1-<1$	<1-<1	
BERYLLIUM Extr.	UG/L	$<1-<1$	<1-<1	
CADMIUM Diss.	UG/L	$<1-<3$	$<1-<3$	calculated
CADMIUM Extr.	UG/L	$<1-<3$	$<1-<3$	calculated
CALCIUM Diss.	MG/L	3.81-4.54	3.01-5.73	
CALCIUM Extr.	MG/L	3.68-4.95	2.91-6.14	
CARBON DISSOLVED ORGANIC	MG/L	3.9-4.5	7-12.8	
CARBON, TOTAL IN-ORG	MG/L	2.5-3	1.6-3.7	
CARBON, TOTAL ORGANIC	MG/L	3.5-5.9	6.7-11.3	
CHLORIDE	MG/L	1.43-1.76	2.84-7.84	150^{2}
CHROMIUM Diss.	UG/L	<2-<2	<2-<2	8.9
CHROMIUM Extr.	UG/L	$<2-<2$	<2-<2	8.9
COBALT Diss.	UG/L	$<3-<5$	$<3-<5$	
COBALT Extr.	UG/L	$<3-<5$	$<3-<5$	
COLOUR	HAZENUNI	7-9	32-68	
COPPER Diss.	UG/L	$<1-<2$	$<1-<2$	2
COPPER Extr.	UG/L	<1-<2	<1-<2	2
GRAN ALKALINITY	MG/L	9.38-11.37	7.26-15.11	
IRON Diss.	MG/L	<0.01-0.01	0.06-0.19	0.3
IRON Extr.	MG/L	$<0.01-0.02$	0.08-0.3	0.3
LEAD Diss.	UG/L	<10-<10	<10-<10	1
LEAD Extr.	UG/L	<10-<15	<10-<10	1
MAGNESIUM Diss.	MG/L	0.57-0.66	0.54-0.97	
MAGNESIUM Extr.	MG/L	0.57-0.72	0.53-1.05	
MANGANESE Diss.	UG/L	<2-2	18-74	
MANGANESE Extr.	UG/L	1-7	19-84	
MOLYBDENUM Diss.	UG/L	$<3-<5$	$<3-<5$	73
MOLYBDENUM Extr.	UG/L	$<3-<5$	$<3-<5$	73
NICKEL Diss.	UG/L	<4-<6	$<4-<6$	calculated
NICKEL Extr.	UG/L	<4-<6	<4-<6	calculated
NITRATE-NITROGEN	MG/L	<0.02-<0.02	<0.02-0.08	
NITROGEN TOTAL	MG/L	0.14-0.19	0.22-0.41	
NITROGEN TOTAL Diss.	MG/L	0.13-0.18	0.24-0.42	
PH	PH UNITS	7.33-7.47	7.09-7.49	6.5-9
PHOSPHOROUS	MG/L	0.004-0.008	0.012-0.035	$0.03{ }^{3}$
POTASSIUM Diss.	MG/L	0.31-0.37	0.4-1.44	
POTASSIUM Extr.	MG/L	0.2-0.38	0.4-1.48	
SELENIUM DISSOLVED	UG/L	<0.1-<0.1	<0.1-0.1	
SELENIUM EXTRACTABLE - ICP/MS	UG/L	<0.1-<0.1	<0.1-0.1	

Results from 2008 Monthly Grab Samples				
				Aquatic Life
Parameter	Units	Forest City, ME	St. Stephen, NB	Guidelines ${ }^{1}$
SILVER Diss.	UG/L	<1-<2	<1-<2	0.05
SILVER Extr.	UG/L	<1-<2	<1-<2	0.05
SODIUM Diss.	MG/L	1.33-1.5	3.51-11.02	
SODIUM Extr.	MG/L	1.33-1.68	3.44-11.73	
SPECIFIC CONDUCTANCE	US/CM	31.2-36.5	37.9-88.4	
STRONTIUM Diss.	UG/L	19-23	14-26	
STRONTIUM Extr.	UG/L	20-25	14-28	
SULPHATE	MG/L	2.11-2.41	3.91-11.57	
THALLIUM Diss.	UG/L	<0.1-<0.1	<0.1-<0.1	
THALLIUM Extr.	UG/L	<0.1-<0.1	<0.1-<0.1	
TIN Diss.	UG/L	<0.1-<0.1	<0.1-<0.1	
Tin Extr.	UG/L	<0.1-<0.2	<0.1-<0.1	
TITANIUM Diss.	UG/L	<1-<1	<1-1	
TITANIUM Extr.	UG/L	<1-<1	<1-2	
TOTAL SUSPENDED SOLIDS	MG/L	<2-5.1	2.1-4.2	
TURBIDITY	NTU	0.2-0.5	0.8-2.4	
URANIUM Diss.	UG/L	<0.1-<0.1	<0.1-<0.1	
URANIUM Extr.	UG/L	<0.1-<0.1	<0.1-<0.1	
VANADIUM Diss.	UG/L	<2-<4	<2-<4	
VANADIUM Extr.	UG/L	<2-<4	<2-<4	
ZINC Diss.	UG/L	<1-<2	<2-11	7.5
ZINC Extr.	UG/L	<1-<2	2-33	7.5
1 - All values refer to the Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines				
for the Protection of Aquatic Life unless otherwise indicated.				
2-BC MOE - British Columbia Ministry of Environment. 2001. British Columbia Approved Water Quality Guidelines (criteria) 1998 Editio				
Environmental Protection Division, British Columbia Ministry of Environment, Victoria, British Columbia. Updated August 24, 2001 (www.env.gov.bc.ca/wat/wq/BCguidelines/approv_wq_guide/approved.html).				
3 - Dodds et al -Dodds, W.K., J.R. Jones, and E. Welch. 1998. "Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus." Water Research, 32: 1455-1462.				

St. Croix River at Milltown, NB

pH (std units)

2 Turbidity sensor malfunction - data unuseable after December 14
St. Croix River at Milltown, NB

St. Croix River at Forest City, ME

| | January | February | March | April $^{\mathbf{1}}$ | May | June | July | August | September | October | November | December |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max | 1.1 | 1.4 | 1.6 | 5.9 | 14.3 | 21.5 | 25.6 | 23.3 | 21.0 | 16.6 | 9.2 | 2.6 |
| Min | 0.8 | 0.9 | 1.2 | 1.2 | 4.0 | 12.3 | 18.2 | 19.2 | 15.4 | 7.6 | 0.0 | -0.1 |
| Mean | 1.0 | 1.1 | 1.4 | 2.0 | 10.0 | 17.3 | 23.3 | 21.3 | 18.2 | 11.4 | 5.9 | 0.7 |
| \% of monthly
 data used | 85 | 80 | 90 | 22 | 100 | 100 | 98 | 100 | 100 | 100 | 90 | 80 |
| 1 Probe was out of the water for part of the month - no data. | | | | | | | | | | | | |

St. Croix River at Forest City, ME

