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Executive Summary
1.1 Problem Description

Figure 1.1. A. Adult loon with a single
egg in a nest. Nests are placed along shore-
lines, and may be vulnerable to flooding. B.
Nesting raft with canopy to conceal eggs and
chicks from predators.

The objectives of this project were
to develop and test statistical mod-
els to quantify any effects of water-
level fluctuation on reproductive
success of common loons (Gavia im-
mer ; Fig. 1.1) in Minnesota lakes,
and then use the best-performing
model to quantify any observable ef-
fects of the 2000 Rule Curves on
loons of Rainy Lake and the Na-
makan Reservoir complex. Repro-
ductive success was defined as the
number of chicks per nesting pair
that survived through fledging (the
onset of flight).

The water-levels in Rainy Lake
and the Namakan Reservoir com-
plex (Namakan, Kabetogama, Crane,
Sand Point and Little Vermilion
Lakes) are regulated by a hy-
dropower dam between Interna-
tional Falls, MN and Fort Francis,
ON, and a secondary pair of dams
at Kettle and Squirrel Falls which
separate Rainy Lake from the Na-
makan Reservoir complex. From
1970 through 1999, dam operations
(1970 Rule Curves; Fig. 1.2) reduced the amplitude of water-level fluctua-
tions in Rainy Lake and increased the amplitude in the Namakan Reservoir
complex relative to natural conditions. The 2000 Rule Curves primarily
reduced the amplitude in the Namakan Reservoir complex.

The common loon is the Provincial Bird of Ontario and the State Bird
of Minnesota. Loons are highly territorial and actively compete for both
nesting and feeding sites (Paruk, 1999). Loons typically nest along shore-
lines of lakes and rivers, preferentially near drop-offs and on sheltered sides
of islands or floating bogs (McIntyre and Barr, 1997). Because common
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Figure 1.2. Observed surface elevations (black lines) and the 1970
and 2000 Rule Curves (gray bands) for Rainy Lake and the Namakan
Reservoir.
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loons nest close to the water, nests are vulnerable to water-level fluctua-
tions. Breeding pairs will attempt to elevate nests during water-level rises,
but large and rapid rises may flood nests causing mortality in eggs. As a
consequence, water-level fluctuations may be a major source of variation
in reproductive success (Belant and Anderson, 1991), and artificial floating
nests have been used to help ameliorate effects of water-level fluctuations
(Fair and Poirier, 1992; Piper et al., 2002; DeSorbo et al., 2007). How-
ever, increased levels of territorial aggression among breeding males have
also been observed from competition for artificial nesting platforms (Mager
et al., 2008), and net benefits remain somewhat uncertain.

Predation may also be a significant source of mortality among eggs and
chicks (Belant and Anderson, 1991; McIntyre and Barr, 1997; Evers, 2007).
Potential predators include large fishes and especially Esox spp., mammals
and predatory birds. Bald eagles (Haliaeetus leucocephalus) are considered
to be a major predator on chicks (Paruk, 1999), and may even prey on
nesting adults (Vlietstra and Paruk, 1997). Predation by bald eagles may
introduce a temporal trend in reproductive-success data because their abun-
dance has been increasing steadily since the 1960’s (http://www.fws.gov/
midwest/eagle/population/chtofprs.html). Unfortunately, regional data
from other potential predators were lacking.

1.2 Approach

1.2.1 Data

Data from lakes having a surface area of at least 405 ha (1,000 acres) were ob-
tained from the Minnesota LoonWatcher Survey (LWS; http://www.dnr.

state.mn.us/eco/nongame/projects/loon_survey.html), the Minnesota
Loon Monitoring Program (MLMP; http://www.dnr.state.mn.us/eco/

nongame/projects/mlmp_state.html), and from research conducted by Voya-
geurs National Park (VOYA) from 1979–2009. The LWS and MLMP surveys
were conducted by citizen-volunteers who sent observations to the Minnesota
Department of Natural Resources. The LWS volunteers made observations
during “late summer” and MLMP volunteers made observations during the
first half of July. Some volunteers surveyed entire lakes, but most surveys
were conducted on unspecified portions of lakes. The LWS recorded counts
of breeding pairs, chicks and total adults. Not all adults breed, so that breed-
ing pairs were some fraction of the total adults observed. Because surveys
were made during mid- to late summer after some chicks have fledged (begun
flying), we assume that chick counts from all surveys provided a consistent
measure of reproductive success. That assumption depends upon minimal
mortality after chicks reach six weeks of age, which may be reasonable (Ev-
ers, 2007). The MLMP recorded counts of total adults and chicks, but not
counts of breeding pairs. The VOYA surveys made detailed recordings of
chicks, pairs and adults within established loon territories on Rainy, Na-
makan, Kabetogama and Sand Point Lakes, and were conducted by trained

5



experts. A total of 871 lake-years of observations were used in this study.
Water-level recordings were obtained from within the nesting season from

each lake. Daily water-level recordings were available from a few large lakes,
but otherwise as few as three values were available. Two covariates were
computed from the water-level series from each lake. The maximum of the
daily rate of water-level increases measures the pace of water-level rises.
Large fast increases in water level may overwhelm loons ability to elevate
nests. The maximum rise during the nesting season measures the peak net
increase in water level. Large and persistent water-level rises may flood nests
and thwart re-nesting attempts by loons.

Based on the literature, the nesting season was defined as a 60-day long
window within each lake. For model fitting, data were used only from lakes
from which there were at least three years of data for which there were at
least six recordings of water level within the 60-day nesting season. We also
evaluated models based on 45-day nesting seasons.

Lake 1 Lake 2 Lake 3

Lake 4 Lake 5 Lake 6

Lake 7 Lake 93

Minnesota lakes 

VOYALW & MLMP

MLMPLW MLMP

LW LWLW

Figure 1.3. Hierarchical structure of Minnesota loon data. Lake num-
bers and graphs are fictitious and presented only to illustrate character-
istics of each loon survey program. The horizontal axes represent time
and the vertical axes represent an arbitrary measure of loon abundance.

The data have a natural hierarchical structure (Fig. 1.3). At the top
level, all data were obtained from Minnesota lakes, and provide information
about the loon population breeding on Minnesota lakes. At the second level,
multiple lakes were surveyed by each program. Some lake surveys were occa-
sionally interrupted, perhaps when different volunteers left or joined either
the LWS or MLMP (Fig. 1.3, Lake 1). Typically, individual lakes were sur-
veyed during relatively few years (Fig. 1.3, Lakes 2, 3, 6 and 93), but annual
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recordings were available from a few lakes (Lake 5). Sometimes multiple
volunteers within a program sampled the same lake, and their observations
may have overlapped in time (Lake 4). In a few cases, LWS and MLMP sur-
veys were completed on the same lake (Fig. 1.3, Lake 7). Data from any one
lake provided relatively little information on any effect of water-level fluctu-
ation on loon reproductive success. However, borrowing of strength across
the entire ensemble of lakes enabled more precise prediction of the effect of
water-level fluctuations on the reproductive success of common loons.

1.2.2 Models

The empirical models developed in this study predict likely effects of water-
level fluctuations on the reproductive success of common loons on Minnesota
lakes, measured as the number of chicks per nesting pair during mid- to late
summer. That measure of reproductive success was influenced directly by
factors specific to the nesting lakes, including water-level regime, predation
on chicks and other lake-specific factors. In contrast, the abundance of the
larger regional loon population was also influenced by adult mortality rates
(Grear et al., 2009) and other factors which operated during migration and
on the wintering grounds. The models developed in this study do not address
the population dynamics of loons or trends in abundance.

Einstein’s admonition that “everything should be made as simple as pos-
sible, but not simpler” provided guiding philosophy for model development.
Unfortunately, the structure of the data and the goal of the modeling re-
quired substantial complexity (Fig. 1.4). Model adequacy was assessed from
predictions of validation data that were not used to fit the models. There-
fore the data were split into two sets. The model fitting set was used in
model development, and a smaller validation set was withheld and used to
assess the ability of the model to make new predictions. Relevant input
data included counts of adult loons, breeding pairs, and chicks, measures of
water-level fluctuation, and an index of eagle (predator) abundance. Only
breeding pairs produce chicks, and counts of breeding pairs were not avail-
able from the MLMP. Therefore an imputation submodel (Fig. 1.4) was
needed to predict pair counts from the MLMP. Pair counts were also made
with error because identification of pair bonds is likely less certain than
simple identification of common loons. Therefore the imputation submodel
also provided the means to estimate the pair counts that would be expected
in the absence of measurement error. The reproductive-success submodel
(Fig. 1.4) has the expected pair counts, water-level fluctuations and eagle
counts as input predictor variables to estimate chick counts. The bottom-
level model parameters for the effects of expected pair counts and water
levels are specific to each lake. However, a top-level generalizes the effect of
water-level fluctuations across all lakes.

Hierarchical Bayesian model formulations, which respect the structure of
the data, were used to “borrow strength” from the entire set of lakes to iden-
tify the effect of water-level fluctuation on reproductive success. Bayesian

7



Data Model
Adult counts
LW, MLMP & VOYA

LW, MLMP & VOYA

Model fitting

Validation

Model fitting

Validation

Pair counts

Chick counts

LW & VOYA only

Model fitting

Validation

Water levels
LW, MLMP & VOYA

Model fitting

Validation

Eagle counts
Regional or national

Fitting Validation

Expected pair counts

Expected chick counts

Imputation submodel

Nesting success submodel Predicted

nesting

success

Observed

nesting

success

COMPARE

Figure 1.4. General structure of model design for assessment of effects
of water-level fluctuation on reproductive success of common loons. Re-
productive success was defined as the number of chicks per pair that
survived their first summer of life.
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methods (Ellison, 2004; Gelman et al., 2004; Carlin and Louis, 2009) were
selected for this study because they: (a) produce intuitive, easily understood
inferences based on probability or odds; (b) accommodate the hierarchical
structure of the data; (c) enable inclusion of measurement/estimation error
in the predictor covariates; and (d) enable modeling or imputation of miss-
ing data in a way that fairly represents the resulting uncertainty. Bayesian
inferences are based on the posterior probability distributions of model pa-
rameters. Posterior distributions are proportional to the product of the
likelihood function, which contains all of the relevant information in the
observed data, and the prior probability distributions of the model parame-
ters. Prior distributions quantify beliefs about the parameters that existed
before observing the data. This study universally incorporated vague prior
distributions, which contain little information about the parameters. Fur-
thermore where sample sizes are large, as in this study, the likelihood (data)
dominates the inference and even strongly informative priors have little in-
fluence on the posterior distribution. Therefore the inferences of this study
benefit from the capabilities of Bayesian methods but are still dominated by
the likelihood in the spirit of frequentist methods.

Nine model variations were evaluated (Table 1.1). All models assumed
that chick and pair counts followed Poisson distributions within lakes, but
included lake-specific latent random effects which resulted in potentially
over-dispersed Poisson distributions across lakes. Either lognormal or log-t
distributions were assumed for the lake-specific random effects, which were
estimated from the data.

Table 1.1. Summary characteristics of hierarchical Bayesian models for evaluation of
effects of water-level fluctuations on loon reproductive success. Duration is the assumed
length of the nesting season (days) and Lake-effect is the assumed distribution for the
lake-specific latent random effects.

Model Duration Water-level covariate Lake-effect
1 60 Max. daily rise rate lognormal
2 60 Max. daily rise rate log-t
3 60 Max. rise lognormal
4 60 Max. rise log-t
5 60 Both lognormal
6 60 Quadratic max. rise lognormal
7 45 Quadratic max. rise log-t
8 45 Same as Model 5 lognormal
9 45 Max. rise log-t

1.3 Findings

All models predicted reduced reproductive success from increased daily rates
of water-level rise or net water-level rises during the loon nesting season.
The best models predicted all major features of the data, and also yielded
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plausible predictions of observations that had not been used in model fit-
ting. Model 6 (Table 1.1) performed best in the Minnesota data based on
the Deviance Information Criterion and based on out-of-sample validations.
Reproductive success is maximized where water-levels are constant during
the nesting season, and decline both during substantial water-level decreases
and increases (Fig. 1.5).
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Figure 1.5. Multiplicative effect of water-level covariates on baseline
reproductive success of common loons. The solid line is the posterior
mean predicted effect and the pairs of dotted-dashed and dashed lines
enclose regions having posterior probability of 0.90 and 0.95, respec-
tively. regions, respectively.

The water-level regimes of the 1970 and 2000 Rule Curves on Rainy Lake
and the Namakan Reservoir were used as input to Models 6. Estimates of
the effects of the Rule Curves were based on posterior predictions from the
counts of adult loons and pairs made during 2005, which were replicated over
the 30-year history of water levels under the 1970 Rule Curves and over the
11-year history of water levels under the 2000 Rule Curves. The bald eagle
index was held fixed at the mean value for the period of record in order
to isolate and identify any effect of water-level fluctuation. Because chick
counts were not included in the replicated data, those data do not inform
the model fit. Thus, the model yielded conditional out-of-sample posterior
retrodictions of reproductive success from 1970–1999 and from 2000-2009
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given a constant adult population fixed at the 2005 observations and eagle
abundance fixed at the mean. The resulting predictions are likely biased
for true nesting success within each time period, but yield comparable and
valid predictions of changes in nesting success that are attributable to 2000
Rule Curves.

Table 1.2. Posterior predictions of differences in mean chicks per pair between the 2000
and 1970 Rule Curves based on Model 6 and the maxima of water-level rises over the 60-d
nesting seasons in Rainy Lake and the Namakan Reservoir (Namakan, Kabetogama and
Sand Point Lakes). Adult loon counts and bald eagle abundance was held fixed in these
comparisons in order to isolate the effect of water-level fluctuation. Given the data and
model, credible sets contain the true mean differences with probability 0.95.

Chicks per pair Chicks

Percent Mean Credible Mean Credible
Lake change difference set difference set

Rainy -6.2 -0.09 -0.05–0.01 -1.3 -4.5–1.8
Namakan 45.3 0.16 0.09–0.24 4.2 1.3–7.7
Kabetogama 45.4 0.12 0.07–0.17 4.0 1.2–7.1
Sand Point 45.4 0.08 0.04–0.12 0.5 -0.3–1.5

By hypothesis, the reduced amplitude of the 2000 Rule Curve on the
Namakan Reservoir (Namakan, Kabetogama and Sand Point Lakes) should
reduce the maxima of water-level rises during the nesting season and result
in improved loon reproductive success. Model 6—based on the maxima
of water-level rises during the presumptive 60-day nesting season—predicts
increases of approximately 45% in the reproductive success of common loons,
as measured by chicks per pair, under the 2000 Rule Curve on the lakes of the
Namakan Reservoir (Table 1.2). The data and model support the hypothesis
that the 2000 Rule Curve for the Namakan Reservoir has aided increased
reproductive success of common loons. As expected based on water levels
(Fig. 1.2), the Pr = 0.95 credible set for change in nesting success on Rainy
Lake includes zero (Table 1.2).

The data and models of this study provide information about effects
of water-level fluctuations, bald eagle predation and/or regional trend and
Minnesota climatic regime on the reproductive success of common loons on
the breeding lakes. Therefore these models do not provide information on
any ultimate effects of those factors on the regional abundance of loons,
which is also influenced by factors that operate during migration and on
the wintering grounds. Regional population growth rates may be highly
sensitive to adult mortality rates, for which evidence of density-dependence
is equivocal based on models of New Hampshire populations (Grear et al.,
2009).

Therefore information is currently lacking to predict the consequences
of variable reproductive success on abundance of loons in Minnesota and
western Ontario. For example, if adult mortality rates are independent of
adult population density, then the average annual additions of approximately
eight chicks per year (Table 1.2) would eventually add more breeding pairs
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on the Namakan Reservoir. In turn those new breeding pairs would produce
additional chicks, creating a trend of increasing population size via the same
mechanism by which the compounding of interest (new chicks) increases the
principle (loon population size) over time. Given that loons first breed at
age 4–7 years (McIntyre and Barr, 1997), the time-frame for observation of
unequivocal population increase may be decades. However if adult mortality
rates increase strongly with adult densities or if regional nesting territories
are fully occupied, then no increase in population size may be realized.
Ongoing monitoring would be required to resolve that unanswered question.
Regardless, it is clear that the rate of reproductive success of common loons
has improved under the 2000 Rule Curve on the Namakan Reservoir.
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Effects of Water-Level Fluc-
tuations on Reproductive Suc-
cess of Common Loons
2.1 Introduction

2.1.1 Problem Description

The objectives of this project were to develop and test statistical models
to quantify any effects of water-level fluctuation on reproductive success
of common loons (Gavia immer) in Minnesota lakes, and to use the best-
performing model to quantify any observable effects of the 2000 Rule Curves
on loons of Rainy Lake and the Namakan Reservoir complex. Reproductive
success was defined as the number of chicks per nesting pair that survived
through their first summer.

The water-levels in Rainy Lake and the Namakan Reservoir complex
(Namakan, Kabetogama, Crane, Sand Point and Little Vermilion lakes) are
regulated by a primary hydropower dam between International Falls, MN
and Fort Francis, ON, and a pair of secondary dams at Kettle and Squir-
rel Falls which separate Rainy Lake from the Namakan Reservoir complex
(Fig. 2.1). The primary dam became operational in 1909 and the secondary
dams became operational in 1914. Lac La Croix, an unregulated and nearly
pristine lake above Namakan Lake, presented a natural hydrograph for com-
parison. Overall, dam operations have tended to reduce the amplitude of
annual water-level fluctuations in Rainy Lake, while increasing the amplitude
in the Namakan Reservoir complex (Fig. 2.2), although water-level patterns
varied considerably through the early 1950’s. Dam operations have also cre-
ated highly regular and unnatural annual cycles that differ markedly from
the more variable natural hydrograph from Lac La Croix. Near-decadal cy-
cles are apparent in the hydrograph from Lac La Croix, wherein sequences of
low- and high-water years alternate, and include periods of low intra-annual
variability (Fig. 2.2).

Dam operations have followed water-level Rule Curves prescribed by the
International Joint Commission. Dam operators strive to maintain water
levels within the date-specific Rule Curve bounds, and have been remark-
ably successful (Fig. 2.3). The 1970 Rule Curves maintained a narrow range
of intra-annual variation on Rainy Lake while creating a nearly 3-m range of
intra-annual fluctuation on the Namakan Reservoir. The 2000 Rule Curves
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were designed to reduce intra-annual water-level fluctuations on the Na-
makan Reservoir, and have reduced the intra-annual range by approximately
1 m with negligible effect on water levels in Rainy Lake.

2.1.2 Biology of the Common Loon

The common loon is the Provincial Bird of Ontario and the State Bird of
Minnesota. Loons are migratory waterfowl which breed in the northern-tier
States and throughout much of Canada. Arrival on nesting and summer-
feeding lakes is largely determined by the timing of ice-out, and nesting may
commence 4–6 weeks afterward (Evers, 2007). Typically two eggs are laid
during the first nesting attempt; one-egg nests are common and three-egg
nests are rare (McIntyre and Barr, 1997). The incubation period for two-
egg nests averages 28 days. Nesting failures are not uncommon, and mated
pairs may re-attempt nesting (McIntyre and Barr, 1997). Nests may be
reconstructed quickly and replacement eggs may be laid within 8–19 days
of initial nest loss. Incubation of replacement eggs may rarely extend into
July (McIntyre, 1988). Therefore the nesting season for common loons is
protracted and variable.

Loons typically nest close to water along shorelines of lakes and rivers,
preferentially near drop-offs and on sheltered sides of islands or floating bogs
(McIntyre and Barr, 1997). Because common loons nest along shorelines,
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nests are vulnerable to water-level fluctuations(Barr, 1986). Nesting pairs
may attempt to elevate nests during water-level rises (Barr, 1986), but large
and rapid rises may flood nests causing mortality in eggs. As a consequence,
water-level fluctuations may be a major source of variation in reproductive
success (Belant and Anderson, 1991).

Reproductive success seems generally lower on reservoirs than on natural
lakes (Fair, 1979). Frequency of loon reproductive success was lower in the
Namakan Reservoir complex (larger water-level fluctuation) than on Rainy
Lake (lower water-level fluctuation) or on inland lakes of Voyageurs National
Park, and approximately 60% of nesting failures on Rainy and Namakan
Lakes during 1983–1986 were attributed to flooding (Reiser, 1988). DeSorbo
et al. (2007) analyzed data from New England lakes and estimated a 21%
reduction in successful nesting attempts in lakes that had fluctuating water
levels. Their data did not quantify water-level fluctuations, nor did they
distinguish increases from decreases.

Artificial floating nests have been used to help ameliorate effects of water-
level fluctuations (Fair and Poirier, 1992; DeSorbo et al., 2007). Piper et al.
(2002) documented improved nesting success on platforms, but attributed
the effect to protection from mammalian predators rather than reduced
flooding. However, increased levels of territorial aggression among breed-
ing males have also been observed from competition for nesting platforms
(Mager et al., 2008), and net benefits remain somewhat uncertain.

Loons are highly territorial and actively compete for nesting, chick-
rearing and feeding sites (Paruk, 1999). Territorial combat between adult
loons may be lethal (McIntyre and Barr, 1997), and adult loons may also
intrude into pair territories and kill chicks (Kenow et al., 2003). Not all
adult loons attempt nesting or defend territories. Nesting adults (loons that
are at least 4–6 years old) may comprise 54–77% of the total number of re-
turning loons, which also include non-breeding sub-adults, older loons that
have been displaced from established territories and non-breeding territory
defenders (Evers, 2007).

Predation may also be a significant source of mortality among eggs
and chicks (Belant and Anderson, 1991; McIntyre and Barr, 1997). Poten-
tial predators include large fishes and especially Esox spp., mammals and
predatory birds. Bald eagles (Haliaeetus leucocephalus) may be a significant
predator on eggs and chicks (Paruk, 1999), and may even prey on nesting
adults (Vlietstra and Paruk, 1997). Predation by bald eagle may introduce
a temporal trend in nesting-success data because their abundance has been
increasing steadily since the 1960’s (http://www.fws.gov/midwest/eagle/
population/chtofprs.html).
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2.2 Methods

2.2.1 Data

Loon Counts

Data consisting of counts of common loons on Minnesota lakes were ob-
tained from two monitoring programs implemented by citizen volunteers,
and a comprehensive monitoring effort on Rainy Lake and three lakes of the
Namakan Reservoir complex (Namakan, Kabetogama and Sand Point, 1979–
2009; Windels et al., In prep) within Voyageurs National Park (VOYA). The
voluntary monitoring programs were managed by the Minnesota Department
of Natural Resources, which provided data used in this study.

The Minnesota Loon Monitoring Program (MLMP: http://www.dnr.
state.mn.us/eco/nongame/projects/mlmp_state.html)), coordinated by
the Minnesota Department of Natural Resources, has been in operation since
1994. Volunteers visit each of more than 600 lakes distributed among six
“index areas” during the first half of July. The volunteers count the num-
bers of adult loons and juveniles (young-of-the-year birds, henceforth called
chicks), and record ancillary information. Some counts were made from the
shoreline, especially on small lakes, and others were made from boats. Vol-
unteers are encouraged to use binoculars, and are provided with written in-
structions for observation, bird identification and recording. The Minnesota
LoonWatcher Survey (LWS: http://www.dnr.state.mn.us/eco/nongame/
projects/loon_survey.html) is also coordinated by the Minnesota De-
partment of Natural Resources, and has been in operation since 1979. Loon-
Watcher volunteers report observations from lakes“at the end of the season”,
and count the numbers of nesting pairs, adults and chicks. Only MLMP and
LWS observations from lakes of at least 405 ha (1,000 acres) were used in
the present study.

Prediction of Nesting Seasons from Ice-out Dates

Data on historical ice-out dates on Minnesota lakes were obtained from the
Minnesota State Climatology Office, St. Paul. The historical ice-out records
included observations from many, but not all, of the combinations of lake and
year from which loon counts were available. Actual lake×year observations
of ice-out dates were used when possible. Otherwise, yearly mean ice-out
dates were computed from within each of five temperature zones based on
30-year average May temperatures, and applied to lakes within those zones
(Fig. 2.4). Ice-out dates were converted to day-of-the-year (1 = January 1).

Recordings of dates of first nesting attempts by common loons were made
from the large lakes of VOYA, 2004–2006, but were not available from the
MLMP or LWS. Therefore the VOYA data were used to estimate the dates
of first nesting attempts from the other combinations of lake and year based
on 5th-percentile predictions from quantile regression of first-nesting date on
day-of-the year. The resulting formula for estimation of day-of-the-year of
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Figure 2.4. Minnesota counties from which loon-count data were avail-
able, shaded by assignments to April temperature categories 1–5. St.
Louis county was split to better conform to temperature patterns (inset;
http://www.climate.umn.edu/doc/historical/temp_norm_adj.htm).
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first nesting is given by doy nest = 70.37 + 0.56doy io, where doy io denotes
the day-of-the-year of ice out. Nesting seasons were defined as the 60-day
intervals beginning with either the observed day of first nesting (VOYA) or
with doy nest (LWS and MLMP). A similarly defined 45-day nesting season
was also considered to evaluate sensitivity to variation in the duration of the
assumed nesting season.

Water Levels

Water-level recordings were obtained from the LWS, MLMP or from gages
operated by the U.S. Geological Survey or dam operators. Water-surface
elevations were typically recorded at somewhat regularly spaced temporal
intervals (e.g., weekly, daily, etc.), and the numbers of water-level recordings
varied among lakes and years. Therefore the quality of water-level data
varied among lakes. Data were retained only from those lakes from which
there were at least six water level recordings within the loon nesting seasons
during each of at least three years. The requirement for six observations
per nesting season insured some minimal ability to estimate the maxima
of changes in water level, and the requirement for at least three years of
data provided ability to estimate lake-specific latent random effects. Those
selection criteria resulted in 939 lake-years of data (Table 2.1). The actual
number of water-level readings varied from six to 60 (daily recordings).

Table 2.1. Loon sample survey counts from Minnesota lakes of at least 405 ha.

Survey program Lakes Lake-years
LoonWatcher Survey (LWS) 77 631
Minnesota Loon Monitoring Program (MLMP) 22 228
Voyageurs National Park (VOYA) 4 80

The principal hypothesis was that loon reproductive success is influenced,
in part, by rises in water levels during the nesting season that are sufficient to
flood nests. Therefore the magnitudes of rises are of primary interest. Two
aspects of water-level rises are plausibly important. First, the maximum of
daily rates of water-level rises is a measure of the magnitude and speed of
rises. Fast rises may overwhelm loons’ ability to relocate or elevate nests.
Second, large increases in water levels over longer periods of time might
also reduce nesting success. For example, even slow but large rises could
force successive re-nesting attempts, delaying or even preventing successful
hatching. Therefore two water-level covariates were examined: max.dwdt,
the maximum of the daily rates of water-level increase (cm·d−1) and max.dw,
the maximum rise (cm) during the nesting season.

Both max.dwdt and max.dw were estimated from the water-level series
from each combination of lake and year. The precision of those estimates
varies greatly because the water-level series included 6–60 water-level read-
ings. Although water level varies continuously with time, the observed max-
ima from daily data likely provide reasonable (essentially error-free) esti-
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Table 2.2. Estimators of finite-population maxima X̂N :N,j and extreme ranges (differ-
ences between estimated maxima and minima) D̂N,j . The naive estimators X̂N :N,1 and
D̂N,1 are based entirely on observed extremes, whereas X̂N :N,2 and D̂N,2 are based on ex-
tensions of the solution of the “German tank problem” (Ruggles and Brodie, 1947) to con-
tinuous random variables. The remaining estimators add multiples of the finite-population
standard error to the observed extremes. δ̄x is the average of the first differences of the
xj and s is the sample standard deviation. See text for other notation.

Population maximum Extreme range

X̂N :N,1 = xn:n D̂N,1 = xn:n − x1:n
X̂N :N,2 = xn:n + δ̄x

√
N−n
N D̂N,2 = X̂N :N,2 −

(
x1:n − δ̄x

√
N−n
N

)
X̂N :N,3 = xn:n + s√

n

√
N−n
N D̂N,3 = X̂N :N,3 −

(
x1:n − s√

n

√
N−n
N

)
X̂N :N,4 = xn:n + 1.5 s√

n

√
N−n
N ŴN,4 = X̂N :N,3 −

(
x1:n − 1.5 s√

n

√
N−n
N

)

mates of the maxima. However that is not the case where few readings are
available, from which the observed maxima from the water-level series un-
derestimate the true maxima. That bias is inversely related to the number
of observations in the series. For example, it is clearly evident that a series
consisting of only six observations is highly unlikely to manifest the true
maximum daily rate of rise during 60-d nesting season, nor can the observed
maximum be greater than the true maximum. Therefore plausible point
estimates and standard errors for max.dwdt and max.dw are needed.

Assume a finite statistical population of N daily water levels, denoted
Xi, i = 1, . . . , N , and define X1:N ≤ · · · ≤ XN :N as the ordered set of water
levels. The assumption of finite populations of water-level readings holds
approximately because the best water-level recordings from Minnesota lakes
are made daily, and variation within days is likely to be small relative to
variation among days. The maximal order statistic (largest value) for the
finite population is XN :N , the minimal order statistic (smallest value) is
X1:1, and the range is denoted by DN = XN :N − X1:N . Of those actual
daily water levels, only some n ≤ N are observed (measured). Those obser-
vations are denoted xj , j = 1, . . . , n, and their ordered values are denoted
x1:n ≤ · · · ≤ xn:n. Therefore XN :N and DN must be estimated from the ob-
served xj . The limiting distribution of xn:n does not generally exist (David
and Nagaraja, 2003). Balakrishnan et al. (2003) derived bounds on expec-
tations of sample order statistics x1:n ≤ · · · ≤ xn:n from finite populations,
but those bounds do not inform bounds on the X1:N ≤ · · · ≤ XN :N . The
“German tank problem” (Ruggles and Brodie, 1947) provides an estimate of
the total number of items (observed and unobserved) based on a sample of
(observed) sequential identifiers (serial numbers). In contrast, estimates of
finite-population extremes based on a sample of real-valued observations xj
were needed for max.dwdt and max.dw. Given the apparent lack of a solution
based on distribution theory, four ad hoc estimators of XN :N and DN were
considered (Table 2.2). The performances of those estimators of finite-
population extremes and range were compared using Monte Carlo simula-
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Figure 2.5. Relative root mean-squared error (RRMSE, top row) and
relative bias (Bias, bottom row) of the four ad-hoc estimators of the
unknown population maximum generated from four distributions Xi,
i = 2, . . . , 4. See text for explanation.
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tion of four hydrographs (Appendix A). The theoretical hydrographs varied
from close similarity to natural hydrographs to a highly variable white-noise
process which assumes that daily water levels are serially independent. The
white-noise process represents an extreme but implausible challenge because
actual water levels on any day must be functions of water levels on the previ-
ous day. Both bias and relative root mean-squared error (overall prediction
error) were compared. The naive estimator X̂N :N,1 = xn:n underestimated
the true maxima from all distributions (Fig. 2.5), as expected. All estima-
tors performed poorly in the white-noise process. X̂N :N,3 was least biased in
distribution 1, which mimicked natural hydrographs, and was competitive
in high-variance autoregressive and moving average processes (distributions
2 and 3). Therefore max.dwdt was estimated using X̂N :N,3. The correspond-

ing estimators of finite-population range, D̂N,j performed similarly in Monte

Carlo simulations, and D̂N,3 was selected as the estimator of max.dw.
For each combination of lake and year, finite-population estimates of

max.dwdt and max.dw were made from the observed water-level series. Stan-
dard errors of the estimates were obtained using the finite-population boot-
strap (McCarthy and Snowden, 1985). Estimates were made for both 60-
and 45-day presumptive nesting seasons. Estimates of max.dwdt were never
much less than zero, whereas both large rises (positive values) and drops
(negative values) in max.dw were obtained (Fig. 2.6).
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Figure 2.6. Marginal distributions of estimates of the maximum daily
rate of water-level rise max.dwdt and maximum rise max.dw over 60-day
presumptive nesting seasons in Minnesota loon-nesting lakes.

Ancillary Predictors

The reproductive success of common loons is influenced by more variables
than water levels. Some eggs and chicks are lost to predators. Consistent
regional data were available from one important predator, the bald eagle.
The Wisconsin Bald Eagle and Osprey Survey (http://dnr.wi.gov/land/

23



wildlife/harvest/harvest.htm) has counted bald eagle nesting territories
statewide since 1979 (Fig. 2.7). The trend from the Wisconsin survey is con-
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Figure 2.7. Numbers of occupied bald eagle territories tabulated by
the Wisconsin Bald Eagle and Osprey Surveys, 1979-2010.

sistent with less complete counts (http://www.fws.gov/midwest/eagle/
population/index.html) from the lower 48 States (1981–2000 and 2006),
Minnesota (1990–2001 and 2005) and VOYA (1973–present). Therefore the
Wisconsin data were used to construct regional index of bald eagle abun-
dance. The regional bald eagle index was computed by standardizing (di-
viding the differences between counts and the mean count by the standard
deviation) the Wisconsin territory counts. The bald eagle index is clearly
confounded with any nearly linear temporal trend. Therefore the bald eagle
index is also a surrogate for any temporal effects, and does not isolate unique
effects of bald eagle predation. Regardless, the potential trend induced by
this predator or any confounded factor that affects loon reproductive success
should not be ignored.

The southern limit of loon breeding range passes through southern Min-
nesota. Therefore a latitudinal or climatic effect on loon reproductive success
is a plausible hypothesis. That hypothesis was examined using the day of
year of ice out doy io, which varied by more than 60 days in the Minnesota
loon data (Fig. 2.8).

Numerous lake-specific factors might also affect loon reproductive suc-
cess, including the abundance of fish prey, housing development along shore-
lines, mammalian predators and numbers of islands. All such factors were
latent for lack of data, but were accommodated as aggregated lake-specific
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Figure 2.8. Distribution of the days of the year of spring ice breakup
for combinations of lakes and years represented in the Minnesota loon
data.

random effects which could be estimated from the hierarchical structure of
the data.

2.2.2 Statistical Models of Reproductive Success

Bayesian modeling methods (Ellison, 2004; Gelman et al., 2004; Carlin and
Louis, 2009) were selected for this study because they: (a) produce intuitive,
easily understood inferences based on probability or odds; (b) accommo-
date the hierarchical structure of the data; (c) enable inclusion of measure-
ment/estimation error in the predictor covariates; and (d) enable modeling
or imputation of missing data in a way that fairly represents the resulting
uncertainty. Bayesian inferences are based on the posterior distributions of
model parameters. Posterior distributions are proportional to the product
of the likelihood function, which contains all of the relevant information
in the observed data, and the prior distributions of the model parameters.
Prior distributions quantify beliefs about the parameters that existed be-
fore observing the data. This study universally incorporated vague prior
distributions, which contain little information about the parameters. Fur-
thermore where sample sizes are large, as in this study, the likelihood (data)
dominates the inference and even strongly informative priors have little in-
fluence on the posterior distribution. Therefore the inferences of this study
benefit from the capabilities of Bayesian methods but are still dominated by
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the likelihood in the spirit of frequentist methods.

Pair Counts

Only nesting pairs produce chicks, but counts of nesting loon pairs were not
made by the MLMP. Further, pair counts depend on correct identification
of pair bonds between female and male loons, and therefore may entail more
counting error than simple counts of chicks or adults. Expected pair counts
and counting-error variances were estimated from the complete data. Let
Xij denote pair counts and let Wij denote counts of adults from lake i during
year j. Loon counts can never be negative. The Poisson distribution is the
simplest model for such data, but the variance is constrained to equal the
mean in that distribution. The possibility of overdispersion (extra-Poisson
variation) was included in the submodel for estimation of pair counts is given
by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εi

εi ∼ Normal (0, τX)

τX ∼ Gamma (3, 1.6) (2.1)

(θ1, θ2) ∼ Normal (0,Ωθ)

Ωθ ∼ Wishart (ρθRθ, ρθ) ,

where λX,ij is the conditional Poisson mean pair count, θ1 and θ2 are “re-
gression” parameters for the linear and quadratic effect of adult counts Wij ,
and εi is a normally distributed latent lake-specific random effect, which is
the presumptive source of any extra-Poisson variation. The precision τX
is the reciprocal of the variance of εi. A Gamma distribution is assumed
for τX , and is equivalent to a vague (low information content) but proper
Inverse Gamma prior distribution for the variance of εi. Any correlation
between θ1 and θ2 is accommodated through the bivariate normal prior dis-
tribution having mean vector 0 and precision matrix Ωθ. That precision
matrix is given the most vague but proper Wishart hyperprior distribution
by choosing the dimension of θ for ρθ and where Rθ is a scaling matrix
of the order of the covariance matrix Σθ = Ω−1θ (Carlin and Louis, 2009).
This model provided an excellent fit to the complete data from the LWS
and VOYA surveys (Fig. 2.9). Further, random draws from the posterior
predictive distribution (Gelman et al., 2004), which provide a measure of
predictive performance on new data, look like the observed data indicating
that all of the distributional assumptions of the pair-count submodel are
approximately correct (Fig. 2.10).
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Figure 2.9. Fitted quadratic regression of common loon pair counts
on adult counts from Minnesota lakes.
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Figure 2.10. Observed pair and adult counts from LWS and VOYA
surveys, and eight independent random samples from the posterior pre-
dictive distribution.
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Hierarchical Models of Reproductive Success

The models of loon chick counts Yij are variations on the general form given
by

Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp (β1,i + βzzij)

β1,i ∼ f (β1, τβ1) (2.2)

τβ1 ∼ Gamma (3, 1)

(β1, βz) ∼ N (0,Ωβ)

Ωβ ∼ Wishart (ρβRβ, ρβ) ,

where zij is a vector of predictor covariates (water-level variable, bald eagle
index and day-of-the-year of ice breakup), the β1,i are lake-specific random-
effects parameters, βz is a parameter vector associated with zij . Note that
the expected values of pair counts λX,ij (Eq. 2.1) appear as offsets (or “ex-
posures”; simple multipliers), so that the exponential function λY,ij is a
dimensionless model of the numbers of chicks per pair. Predictive strength
is borrowed across lakes by assuming that the β1,i share a common mean
β1 and precision τβ1 in the prior distribution f (β1, τβ1). The Gamma(3, 1)
distribution provides a reasonably vague hyperprior specification for the pre-
cision τβ1 in the prior for β1. Two choices for f (·) were evaluated. The choice
of a normal distribution results in a lognormal-Poisson mixture for Y and
a heavy-tailed Student’s t distribution having 3 degrees of freedom provides
a logt-Poisson model for Y that is more robust to the presence of lakes
having extreme reproductive success. Any correlation among β = (β1, βz)
is accommodated through the multivariate normal prior distribution hav-
ing mean vector 0 and precision matrix Ωβ. Again, Ωβ is given the most
vague hyperprior that is still proper by choosing the dimension of β for
ρβ and where Rβ is a scaling matrix of the order of the covariance matrix
Σβ = Ω−1β .

Implementation

A total of nine model variations were evaluated using combinations of the
two alternatives for f (·) (Eq. 2.2), 60- and 45-day presumptive nesting sea-
sons, and alternative forms for water-level covariates (Table 2.3). The mod-
els based on 45-day nesting season were used to examine sensitivity to the
assumption of nesting-season length on any effect of max.dw, which is plau-
sibly a function of nesting-season length. Models 8 and 9 are the 45-day
analogs of models 5 and 4, respectively, and model 7 is a near-analog of
model 6. The effect of climate/latitude doy io was omitted from Models 5–8
because model fitting failed when included in preliminary analyses.

Some samples were withheld from model fitting to evaluate out-of-sample
predictive performance (Table 2.4). There was some overlap between the
LoonWatcher and MLMP surveys; data were withheld from the MLMP
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Table 2.3. Model variations on Eqs. (2.1–2.2) for the evaluation of effects of nesting-
season water-level fluctuations on the reproductive success of common loons on Minnesota
lakes. The water-level covariates were estimated over the duration of the presumptive
nesting season. The bald eagle abundance index was included as a covariate in all models,
but the day of the year of ice breakup was excluded from Models 5–8.

Lake-effect
distribution Nesting Water-level

Model Water-level covariate(s) f (·) season (d) parameter(s)

1 Max. of daily rises: z1 = max.dwdt lognormal 60 β2
2 Max. of daily rises: z1 = max.dwdt log-t 60 β2
3 Max. rise: z1 = max.dw lognormal 60 β2
4 Max. rise: z1 = max.dw log-t 60 β2
5 Both: z1 = max.dwdt, z4 = max.dw lognormal 60 β2, β5
6 Quadratic: z1 = max.dw, z4 =

max.dw2
lognormal 60 β2, β5

7 Quadratic: z1 = max.dw, z4 =
max.dw2

log-t 45 β2, β5

8 Both: z1 = max.dwdt, z4 = max.dw lognormal 45 β2, β5
9 Max. rise: z1 = max.dw log-t 45 β2

surveys where overlap occurred. Finally, a premium was placed on predictive
performance on large lakes. The LoonWatcher surveys spanned many years
on both Leech (44,280 ha) and Vermilion Lakes (4,047 ha), so we withheld
a subset of those samples.

This analysis used R version 2.15.1 (R Development Core Team, 2011).
Bayesian Markov Chain Monte Carlo (MCMC) sampling was implemented
using the R package BRugs version 0.7-7 (Thomas et al., 2006) running under
Ubuntu Gnu Linux 10.04. Three independent Markov chains, each consisting
of 5,000 post-convergence samples, were generated for each model. Conver-
gence was always attained within an initial 6,000 iterations, as measured
by Brooks-Gelman-Rubin diagnostics (Brooks and Gelman, 1997). All code
and model fitting is documented in Appendix B.

Model comparisons were based on the Deviance Information Criterion
(DIC; Spiegelhalter et al. (2002)), which is essentially an extension of the
Akaike Information Criterion (AIC; Akaike 1973) to hierarchical Bayesian
models. DIC was computed for Eqs. 2.1, 2.2 and the total. Models having
smaller values of DIC are preferred, but DIC differences smaller than 5–
10 between models may not be of practical importance (Carlin and Louis,
2009).

Predictive performance was evaluated by comparing the withheld chick
counts (Table 2.4) with Pr = 0.95 Bayesian credible sets for the posterior
predictive distributions. The posterior predictive distribution is the distri-
bution of a future observable given the joint posterior distribution of the
model parameters and the observed data (Gelman et al., 2004). Therefore
the posterior predictive distribution for chick counts is the conditional dis-
tribution for the chick counts that were withheld from model fitting. This
posterior-predictive check informs the accuracy of model predictions from
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Table 2.4. List of samples withheld from model fitting and reserved for evaluation of
out-of-sample predictive performance from the LoonWatcher Survey (LWS), Minnesota
Loon Monitoring Program (MLMP) and Voyageur’s National Park (VOYA).

Survey Lake County Year(s) withheld Samples

LoonWatcher Leech Cass 1993,1995,2004–05 4
LoonWatcher Vermilion St Louis 2005–10 6
MLMP Farm Island Aitkin 2001–02,2007–09 5
MLMP Height of Land Becker 2009 1
MLMP Island Becker 1996,1998–2009 14
MLMP Otter Tail Otter Tail 2004,2007 3
MLMP Vermilion St Louis 1995–2000 6
MLMP White Earth Becker 2003–09 6
VOYA Kabetogama St Louis 1983–1985, 1997, 2001,

2003, 2005, 2007, 2009
9

VOYA Namakan St Louis 1983–1985, 1997, 2001,
2003, 2005, 2007, 2009

9

VOYA Rainy St Louis 1983–1985, 1997, 2001,
2003, 2005, 2007, 2009

9

VOYA Sand Point St Louis 1983–1985, 1997, 2001,
2003, 2005, 2007, 2009

9

Totals 81

new observations.
Bayesian credible sets are intervals which, given the data, model and

priors, contain the unknown parameter with the assigned probability, and
therefore enjoy the natural interpretation which is lost to frequentist confi-
dence intervals. For example given the data, model and priors, a Pr = 0.95
credible set for β2 contains the true but unknown value of that parameter
with 0.95 probability. In contrast, given the data and model, a 95% frequen-
tist confidence interval yields a single realization of an interval which—if re-
calculated for each of a large number of identically distributed loon nesting
histories and monitoring results—would produce a set of similar intervals
among which 95% would contain the unknown parameter. However, the
replication of nesting histories required by frequentist methods is impossi-
ble.

Model performance was also evaluated using Bayesian P-values (Car-
lin and Louis, 2009) for statistics other than the parameters of the models.
Bayesian P-values smaller than 0.025 or larger than 0.975 indicate an inabil-
ity of a model to fit the particular feature of the data. Bayesian P-values
were computed for the largest chick count, the maximum number of chicks
per nesting pair and the skewness of chick counts.

The parameters associated with the water-level covariates (Table 2.3)
are of particular interest. Effects of the water-level covariates on loon repro-
ductive success were quantified by computing the probability of an adverse
effect (regardless of magnitude), denoted Pr(β2 < 0), as the proportion of
posterior realizations of β2 < 0 in the Markov chains. However, any effect
is also a function of water-level fluctuation and therefore the conditional
mean and credible sets were computed for the multiplicative effect of the
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water-level covariate on the numbers of chicks per nesting pair given by
exp (β2z1).

Estimation of Effects of the 2000 Rule Curves on Rainy Lake and
the Namakan Reservoir System

The best model (6) was used to estimate the effect of the 1970 and 2000 Rule
Curves on the reproductive success of common loons on Rainy Lake and the
Namakan Reservoir (Namakan, Kabetogama and Sand Point Lakes). Esti-
mates of the effects of the Rule Curves were based on posterior predictions
from the counts of adult loons and pairs made during 2005, which were repli-
cated over the 30-year history of water levels under the 1970 Rule Curves
and over the 11-year history of water levels under the 2000 Rule Curves. The
bald eagle index was held fixed at the mean value for the period of record.
Because chick counts were not included in the replicated data, those data do
not inform the model fit. Thus, the model yielded conditional out-of-sample
posterior “retrodictions” of reproductive success from 1970–1999 and from
2000-2010 given a constant adult population fixed at the 2005 observations
and eagle abundance fixed at the mean. The resulting predictions are likely
biased for true nesting success within each time period, but yield compara-
ble and valid predictions of changes in nesting success that are attributable
to 2000 Rule Curves.

For each model, 5,000 MCMC samples from the joint posterior distribu-
tion of chick counts and the numbers of chicks per pair were obtained from
each of three independent Markov chains. Each MCMC sample produced
retrodictions from 30 years under the 1970 Rule Curves and 11 years under
the 2000 Rule Curves. The 1970 Rule Curves were treated as the baseline,
and effects of the 2000 Rule Curves were quantified as differences from that
baseline. The differences between the among-year means of predicted chick
counts and chicks-per-pair were computed from each of the 15,000 combina-
tions of MCMC samples and Markov chains from each lake. Then, for each
lake, the means and Pr = 0.95 Bayesian credible sets of differences between
the 2000 and 1970 Rule Curves were computed.

Secondarily, out-of-sample posterior predictions under the 1970 and 2000
Rule Curves were compared with observed mean reproductive success rates
during the intervals 1979–1999 and 2000–2009. Observations of reproductive
success were incomplete during each interval, and therefore the observed
means are error-prone estimates of the true but unknown means during the
spans of the 1970 and 2000 Rule Curves. Further, the bald eagle abundance
increased dramatically from 1979–2009 and therefore predictions based on
constant eagle abundance are likely biased estimates of actual reproductive
success during 1970–1999 and 2000–2009. However, comparisons between
the out-of-sample posterior predictions from the 1970 and 2000 Rule Curves
with observed nesting success provide a supplemental way to evaluate model
performance.
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Table 2.5. Deviance Information Criterion (DIC; smaller is better) and pD, the estimate
of the number of effective model parameters, for chick counts. Models 1–6 for 60-day nest-
ing seasons are not comparable to models 7–9 from 45-day nesting seasons. See Appendix
B for DIC and pD for pair counts and the totals.

Nesting Water-level Lake-effect
Model season covariate(s) prior pD DIC Rank

6 60 Quadratic: z1 = max.dw,
z4 = max.dw2

log-N 61.46 2,587 1

5 60 Both: z1 = max.dwdt, z4 =
max.dw

log-N 63.6 2,592 2

4 60 Max. rise: z1 = max.dw log-t 62.70 2,593 3
2 60 Max. of daily rises: z1 =

max.dwdt
log-t 64.36 2,596 4

3 60 Max. rise: z1 = max.dw log-N 61.95 2,596 4
1 60 Max. of daily rises: z1 =

max.dwdt
log-N 63.24 2,597 5

7 45 Quadratic: z1 = max.dw,
z4 = max.dw2

log-t 64.22 2,526 1

8 45 Both: z1 = max.dwdt, z4 =
max.dw

log-N 65.68 2,531 2

9 45 Max. rise: z1 = max.dw log-t 64.31 2,537 3

2.3 Results and Discussion

2.3.1 Model Comparison and Evaluation of Predictive Per-
formance

The DIC differences between Model 6 and the alternatives models based on
60-day nesting season ranged from 10 to 5 (Table 2.5), which indicates a
practical superiority of Model 6. The second-best model (5) incorporated
both the maximum daily rate of water-level rise and the maximum rise
in water-level over the 60-day nesting season as the water-level covariates.
However, the Pr = 0.95 for the water-level covariate parameters of Model 5
both included zero (Appendix B). Model 4 was a close contender to Model
5 and, like Model 6, included max.dw as the water-level covariate. The
choice of vague prior distribution for the latent lake-specific random effect
β1,i (Models 1 versus 2 and 3 versus 4) had at most a modest effect on
DIC. Overall, the models which included max.dw outperformed those which
included max.dwdt as the water-level covariate. That is, reproductive success
was better predicted by the maximum rise during the nesting season than
by the maximum daily rate of rise. The DIC values from models based on
45-day nesting seasons are not comparable to those from the 60-day nesting
seasons because the requirement for multiple water-level readings within the
smaller time interval eliminated data from some lakes. Further consideration
of the 45-day models is deferred.

All models based on 60-day nesting seasons had difficulty accommodating
the skewness in chick counts (Table 2.6). The Bayesian P-values indicate
that all models adequately predicted extreme chick counts and numbers of
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Table 2.6. Bayesian P-values for the largest observed chick count, skewness of chick
counts and largest observed chick:pair ratio. Values less than 0.025 or larger than 0.975
provide evidence of inability adequately predict those quantities.

Model Maximum chick
count

Skewness of chick
counts

Maximum chicks
per pair

1 0.85 0.98 0.94
2 0.81 0.98 0.53
3 0.80 0.97 0.91
4 0.82 0.98 0.55
5 0.83 0.97 0.54
6 0.82 0.98 0.96

fledged chicks per nesting pair. The flat-tailed Student-t prior on the β1,i
better accommodated large observations of reproductive success (Models 1
versus 2 and 3 versus 4), as measured by numbers of fledged chicks per
nesting pair. Therefore model choice was based entirely on DIC. Model 6
was clearly the best model; the other models were not considered further,
and their results are relegated to Appendix B.

The best model (Model 6) generally predicted the withheld chick counts
satisfactorily (Fig. 2.11). The prevailing containment of the withheld chick
counts within the corresponding Pr = 0.95 credible sets from the posterior
predictive distributions indicates that Model 6 produces reasonable predic-
tions of new observations. The binned (Gelman and Hill, 2006) raw residuals
(averages of differences between observed chick counts and posterior mean
chick counts within consecutive groups of counts) were generally symmet-
rically distributed about zero when plotted against either posterior mean
counts or the water-level covariates (Fig. 2.12), indicating that both models
predict the central tendencies of the data.

2.3.2 Assessment of Effects of Water-Level Fluctuations on
Reproductive Success of Common Loons

All models predicted decreasing loon reproductive success with increasing
water levels during the presumptive 60-day nesting season. Based on Model
6, the posterior Pr = 0.95 credible set for the linear effect of the maxi-
mum increase in water-level rise β2 had an upper bound of zero, and the
Pr = 0.95 credible set for the quadratic effect β4 excluded zero (Table 2.7).
Model 6 predicted reduction of reproductive success to approximately 50%
of baseline (max.dw = 0) where the maximum rise during the 60-day nesting
season reaches approximately 100 cm (Fig. 2.13). Substantial declines in
water-levels during the nesting season were also detrimental to reproductive
success. Model 6 predicted reductions in reproductive success of approxi-
mately 20% where water levels decrease by approximately 100 cm during the
60-day nesting season. That result supports the the hypothesis that falling
water levels lead to nest stranding and increased risk of egg and chick losses
to terrestrial predators (Fair and Poirier, 1992).
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Figure 2.11. Out-of-sample posterior-predictive validation of Model
6. Solid symbols mark the chick counts that were withheld from model
fitting and the vertical bars show corresponding Pr = 0.95 Bayesian cred-
ible sets from the posterior-predictive distribution of chick counts. With-
held chick counts are ordered by magnitude within the LWS, MLMP and
VOYA survey programs for visual clarity.

Table 2.7. Summary of the joint posterior distribution of key parameters of Model 6.
Standard deviation is denoted SD and Monte Carlo sampling error is denoted MC error.

Parameter Mean SD MC error Pr = 0.95 credible set

β1 -0.3294 0.0717 2.2570E-03 (-0.4668, -0.1870)
β2 -0.0016 0.0009 3.3240E-05 (-0.0034, 0.0000)
β3 -0.0718 0.0248 6.0950E-04 (-0.1202, -0.0226)
β4 -0.0056 0.0016 6.1490E-05 (-0.0090, -0.0024)

34



0 5 10 15 20 25 30 35

-10

-5

10

Predicted chick counts

R
a
w

 r
e
s
id

u
a
ls

5

0

-50 0 50 100

-6

-4

-2

6

Max 60-d rise(cm)

0

2

4

Figure 2.12. Binned residual plots from Model 6.

35



Max(water−level rise) (cm)

N
es

tin
g 

su
cc

es
s 

m
ul

tip
lie

r

0.2

0.4

0.6

0.8

1.0

−50 0 50 100 150

Figure 2.13. Multiplicative effect of water-level covariates on baseline
reproductive success of common loons based on Model 6. The solid line
is the posterior mean predicted effect and the pairs of dotted-dashed and
dashed lines enclose Pr = 0.90 and Pr = 0.95 credible sets, respectively.

36



The regional bald eagle abundance index presented a consistent effect on
common loon reproductive success in all nine models. The associated param-
eter β3 (Eq. 2.2) had a posterior mean of approximately -0.07 in all models,
and the Pr = 0.95 credible sets for that parameter always excluded non-
negative values (Table 2.7). The bald eagle abundance index was completely
confounded with a temporal trend (Fig. 2.7) and therefore the observed ef-
fect cannot be attributed uniquely to predation by bald eagles. Regardless
of cause, the conditional effect was a reduction in loon reproductive success
of approximately 23% from 1970 to 2010 across the set of survey lakes.

Perhaps surprisingly, the effect of latitude/climate had no detectable ef-
fect on reproductive success of common loons on the Minnesota lakes. The
associated parameter β4 (Eq. 2.2) had posterior distributions centered near
zero from Models 1–4, and a very small effect in Model 9 (Appendix B). That
is, reproductive success was not detectably lower from Minnesota lakes near
the southern margin of the breeding range than from the northern lakes.
Evidently the day-of-the-year of ice breakup has little effect on the repro-
ductive success of common loons within the spatial extent of the Minnesota
data.

The models based on 45-day nesting seasons were fitted to examine sensi-
tivity to the assumption about duration of the nesting season. The rankings
of models 7–9 were identical to their 60-day counterparts (Table 2.5), indi-
cating that the superiority of Model 6 over Models 5 and 4 is not strongly
contradicted under the assumption of a shorter nesting season. Loon life
history supports the assumption of a 60-day nesting season, and the 45-
day alternative also eliminates some data. Therefore inferences based on
the 60-day models are based on more information and therefore should be
preferred.

2.3.3 Evaluation of Effects of the 2000 Rule Curves for Rainy
Lake and the Namakan Reservoir

Model 6 was used to quantify the effect of the 2000 Rule Curves on the
reproductive success of common loons on Rainy, Namakan, Kabetogama
and Sand Point Lakes (Appendix C). The 2000 Rule Curve on Rainy Lake
is very similar to the 1970 Rule Curve (Fig. 2.3). The maxima of daily rates
of water-level max.dwdt were largely unaffected by the 2000 Rule Curve
(Table 2.8), and all values were near the low end of the range observed from
Minnesota lakes (Fig. 2.13). In contrast, the large change in max.dw on the
Namakan Reservoir (Table 2.8) more clearly reveals the difference between
the 1970 and 2000 Rule Curves.

By hypothesis, the reduced amplitude of the 2000 Rule Curve on the
Namakan Reservoir (Namakan, Kabetogama and Sand Point Lakes) should
reduce max.dw and result in improved loon reproductive success. Model
6—based on the maxima of water-level rises during the presumptive 60-
day nesting season—predicts a 45% increase in the reproductive success
of common loons, as measured by chicks per pair, under the 2000 Rule
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Table 2.8. Means of the estimated maxima of daily rates of water-level rise max.dwdt
(cm · d−1) and the maxima of rises max.dw (cm) during the presumptive 60-day loon
nesting season under the 1970 and 2000 Rule Curves on Rainy Lake and the Namakan
Reservoir.

max.dwdt max.dw

Water body 1970 2000 1970 2000

Rainy Lake 4.0 6.8 36.8 37.1
Namakan Reservoir 5.9 6.6 102.1 49.0

Table 2.9. Posterior predictions of differences between mean chicks per pair under the
2000 and 1970 Rule Curves based on Model 6 and the maxima of water-level rises over the
60-d nesting seasons in Rainy Lake and the Namakan Reservoir (Namakan, Kabetogama
and Sand Point Lakes). Adult loon counts and bald eagle abundance was held fixed in
these comparisons to isolate the effect of water-level fluctuation. Given the data, model
and priors, credible sets contain the true mean differences with probability 0.95.

Chicks per pair Chicks

Percent Mean Credible Mean Credible
Lake change difference set difference set

Rainy -6.2 -0.09 -0.05–0.01 -1.3 -4.5–1.8
Namakan 45.3 0.16 0.09–0.24 4.2 1.3–7.7
Kabetogama 45.4 0.12 0.07–0.17 4.0 1.2–7.1
Sand Point 45.4 0.08 0.04–0.12 0.5 -0.3–1.5

Table 2.10. Observed reproductive success, measured as the number of fledged chicks
per mated pair, and posterior predictions under the 1970 and 2000 Rule Curves based
on Model 6 and the maxima of water-level rises over the 60-d nesting seasons in Rainy
Lake and the Namakan Reservoir (Namakan, Kabetogama and Sand Point Lakes). Adult
loon counts and bald eagle abundance was held fixed in these comparisons in order to
isolate the effect of water-level fluctuation. Given the data, model and priors, credible
sets contain the true reproductive success with probability 0.95.

Rule Credible
Lake curve Observed Predicted set

Rainy 1970 0.43 0.48 0.30–0.69
2000 0.27 0.45 0.14–0.69

Namakan 1970 0.36 0.35 0.08–0.68
2000 0.20 0.50 0.25–0.84

Kabetogama 1970 0.16 0.26 0.06–0.49
2000 0.22 0.38 0.21–0.60

Sand Point 1970 0.26 0.17 0.04–0.33
2000 0.34 0.25 0.13–0.40
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Curve on the Namakan Reservoir (Table 2.9). Our results are consistent
with that hypothesis. Observed loon reproductive success was generally in
good agreement with model-based predictions, based on the assumptions of
constant abundances of adult-loons and bald eagles, from the 1970 and 2000
Rule Curves. The lake-specific averages of observed reproductive success
were within the Pr = 0.95 credible sets for the posterior predictions with
the sole exception of Namakan Lake under the 2000 Rule Curve (Table 2.10).
That is, the effect of the Rule Curves alone is sufficient to explain patterns in
reproductive success of common loons from Rainy Lake and the Namakan
Reservoir complex, with sole exception of Namakan Lake under the 2000
Rule Curve.

The reason for the discrepancy from Namakan Lake under the 2000 Rule
Curve remains unknown. Observations were made only during 1979–1999
under the 1970 Rule Curve, and therefore it is possible that the observed
mean overestimated nesting success during 1970–1999. Otherwise, an un-
known lake-specific effect would seem to have reduced reproductive success
on Namakan Lake under the 2000 Rule Curve relative to expectations based
on the entire set of Minnesota lakes. Speculative possibilities include lake-
specific effects of predators such as fishes and mammals, parasites and the
prey base.

2.4 Summary and Conclusions

Data from two voluntary loon monitoring programs and from Voyageur’s
National Park were used to develop models of reproductive success of com-
mon loons on Minnesota lakes. All models predicted reduced reproductive
success from increased daily rates of water-level rise or net water-level rises
during the loon nesting season. The best models predicted all major features
of the data, and also yielded plausible predictions of observations that had
not been used in model fitting.

The water-level regimes of the 1970 and 2000 Rule Curves on Rainy Lake
and the Namakan Reservoir were used as input to the best model of loon
reproductive success. The leading model, which included the maxima of
water-level rises during the presumptive 60-day nesting season, performed
well over all of the data. The model predicted improvements in reproductive
success of approximately 45% under the 2000 Rule Curve on three lakes of
the Namakan Reservoir complex. Those model predictions were in general
agreement with observations made from 2000-2009, with one exception. Ob-
served reproductive success declined under the 2000 Rule Curve on Namakan
Lake. The cause of that discrepancy remains unknown. Plausible hypothe-
ses include overestimation of reproductive success over the time span of the
1970 Rule Curve and unknown local effects of predation, parasitism and
food supply that were not measured by the data available to this study.

The data and models of this study provide information about effects
of water-level fluctuations, bald eagle predation and/or regional trend and
Minnesota climatic regime on the reproductive success of common loons on
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the breeding lakes. Therefore these models do not provide information on
any effects of those factors on the regional population dynamics of loons,
which are also influenced by factors that operate during migration and on
the wintering grounds. Regional population growth rates may be highly
sensitive to adult mortality rates, for which evidence of density-dependence
is equivocal based on models of New Hampshire populations (Grear et al.,
2009).

Therefore information is currently lacking to predict the consequences
of variable reproductive success on abundance of loons in Minnesota and
western Ontario. For example, if adult mortality rates are independent of
adult population density, then the average annual additions of 8.7 chicks
per year (Table 2.10) would eventually add more breeding pairs on the Na-
makan Reservoir. In turn those new breeding pairs would produce additional
chicks, creating a trend of increasing population size via the same mechanism
by which the compounding of interest (new chicks) increases the principle
(loon population size) over time. Given that loons first breed at age 4–7
years (McIntyre and Barr, 1997), the time-frame for observation of unequiv-
ocal population increase may be decades. However if adult mortality rates
increase strongly with adult densities or if regional nesting territories are
fully occupied, then no increase in population size may be realized. On-
going monitoring would be required to resolve that unanswered question.
Regardless, it is clear that the rate of reproductive success of common loons
has improved under the 2000 Rule Curve on the Namakan Reservoir.

2.5 Acknowledgments

Funding for this study was provided by the International Joint Commis-
sion through Contract Number 1042100753 to the U.S. Geological Survey
(USGS). The Minnesota Department of Natural Resources provided data
from the LoonWatcher Survey (LWS) and Minnesota Loon Monitoring Pro-
gram (MLMP), and this project particularly benefited from the efforts of
Sandy Fecht, Krista Larson and Pam Perry. Kevin Kenow (USGS) pro-
vided critical insights into the biology of common loons and recommen-
dations for implementation. Geof Smith (NPS) managed data acquisition
and Ben Schliffer (USGS) wrote code to extract and consolidate LWS and
MLMP data from the numerous primary files. The numerous LWS and
MLMP volunteers, and participants in the NPS loon surveys collected the
data which made this project possible. Last, we are grateful to Douglas A.
Wilcox, Kevin Kenow and an anonymous statistical reviewer who provided
constructive critical comments which improved this product.

40



Bibliography
Akaike, H., 1973. Information theory and an extension of the maximum

likelihood principle. In B. N. Petrov and F. Csaki, editors, Second Inter-
national Symposium on Information Theory, pages 267–281. Akademiai
Kiado, Budapest.

Balakrishnan, N., C. Charalabides, and N. Papadatos, 2003. Bounds on ex-
pectation of order statistics from a finite population. Journal of Statistical
Planning and Inference 113:569–588.

Barr, J., 1986. Population dynamics of the Common Loon (Gavia immer)
associated with mercury-contaminated waters in northwestern Ontario.
Technical report, Occasional Paper No. 56, Canadian Wildlife Service,
Ottawa.

Belant, J. and R. Anderson, 1991. Common Loon, Gavia immer, produc-
tivity on a northern Wisconsin impoundment. Canadian Field-Naturalist
105:29–33.

Brooks, S. P. and A. Gelman, 1997. General methods for monitoring conver-
gence of iterative simulations. Journal of Computational and Graphical
Statistics 7:434–455.

Carlin, B. P. and T. A. Louis, 2009. Bayesian Methods for Data Analysis,
3rd ed. Chapman & Hall/CRC Press, Boca Raton.

David, H. A. and H. N. Nagaraja, 2003. Order Statistics, 3rd ed. Wiley-
Interscience, Hoboken.

DeSorbo, C., K. Taylor, D. Kramar, J. Fair, J. J. Cooley, D. Evers, W. Han-
son, H. Vogel, and J. Atwood, 2007. Reproductive advantages for common
loons using rafts. Journal of Wildlife Management 71:1206–1213. loons.

Ellison, A. M., 2004. Bayesian inference in ecology. Ecology Letters 7:509–
520.

Evers, D., 2007. Status assessment and conservation plan for the Common
Loon (Gavia immer) in North America. Technical report, BRI Report
2007-20, U.S. Fish and Wildlife Service, Hadley, MA.

Fair, J., 1979. Water level fluctuations and Common Loon nest failure.
In S. Sutcliffe, editor, Proceedings of the North American Conference
on Common Loon Research and Management, pages 57–62. National
Audubon Society, Washington, DC.

41



Fair, J. and B. Poirier, 1992. Managing for common loon on hydroelectric
project reservoirs in northern New England. In L. Morse, S. Stockwell,
and M. Pokras, editors, The Loon and Its Ecosystem: Status, Management
and Environmental Concerns, page 221. U.S. Fish and Wildlife Service,
Concord, NH.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin, 2004. Bayesian
Data Analysis, 2nd ed. Chapman & Hall/CRC, Boca Raton.

Gelman, A. and J. Hill, 2006. Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press.

Grear, J., M. Meyer, J. Cooley, A. Kuhn, W. Piper, M. Mitro, H. Vogel,
K. Taylor, K. Kenow, S. Craig, and D. Nacci, 2009. Population growth
and demography of common loons in the northern United States. Journal
of Wildlife Management 73:1108–1115. loons.

Ince, D. C., L. Hatton, and J. Graham-Cumming, 2012. The case for open
computer programs. Nature 482:485–488.

Kenow, K., M. Meyer, F. Fournier, A. Elfessi, and S. Gutreuter, 2003. Effects
of subcutaneous transmitter implants on behavior, growth, energetics, and
survival of common loon chicks. Journal of Field Ornithology 74:179–186.

Leisch, F., 2003. Sweave and beyond: computations on text doc-
uments. In K. Hornik, F. Leisch, and A. Zeileis, editors, Pro-
ceedings of the 3rd International Workshop on Distributed Statistical
Computing (DSC 2003), Vienna, pages 1–15. Technische Unitversität
Wien, Vienna, Austria. http://www.ci.tuwien.ac.at/Conferences/DSC-
2003/Proceedings/Leisch.pdf.

Mager, J. I., C. Walcott, and W. Piper, 2008. Nest platforms increase
aggressive behavior in common loons. Naturwissenschaften 95:141–147.

McCarthy, J. and C. Snowden, 1985. The bootstrap and finite population
sampling. Technical report, Vital Health Statistics, Series 2, No. 95. The
Department of Health and Human Services Publ. No. (PHS) 85-1369,
Public Health Service, Washington.

McIntyre, J., 1988. The Common Loon: spirit of northern lakes. University
of Minnesota Press, Minneapolis.

McIntyre, J. and J. Barr, 1997. Common loon (Gavia immer). In A. Poole
and F. Gill, editors, Birds of North America, pages 1–31. The Academy
of Natural Sciences, Philadelphia, PA, and The American Ornithologists’
Union, Washington, DC.

Paruk, J., 1999. Territorial takeover in common loons (Gavia immer). Wil-
son Bulletin 111:116–117.

42



Piper, W., M. Meyer, M. Klich, K. Tischler, and A. Dolsen, 2002. Float-
ing platforms increase reproductive success of common loons. Biological
Conservation 104:199–203. loons.

R Development Core Team, 2011. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0.

Reiser, M., 1988. Effects of regulated lake levels on the reproductive success,
distribution and abundance of the aquatic bird community in Voyageurs
National Park, Minnesota. Technical report, Research/Resources Man-
agement Rport MWR-13, U.S. Department of the Interior, National Park
Service, Omaha, NE.

Ruggles, R. and H. Brodie, 1947. An empirical approach to economic intel-
ligence in World War II. Journal of the American Statistical Association
42:72–91.

Spiegelhalter, D. J., N. Best, B. P. Carlin, and A. van der Linde, 2002.
Bayesian measures of model complexity and fit (with discussion). Journal
of the Royal Statistical Society, Series B 64:583–639.

Thomas, A., B. O’Hara, U. Ligges, and S. Sturtz, 2006. Making BUGS
open. R News 6:12–17.

Vlietstra, L. and J. Paruk, 1997. Predation attempts on incubating common
loons, Gavia immer, and the significance of shoreline nesting. Canadian
Field-Naturalist 111:656–657.

Windels, S., E. Beever, J. Paruk, A. Nelson, J. Fox, D. Evers, and C. Mac-
Nulty, In prep. Effects of 2000 rule curve on the reproductive success of
the common loon Gavia immer in Voyageurs National Park. National
Park Service, Voyageurs National Park, International Falls, MN.

43



Appendices

44



Appendix A
Comparative Evaluation of Es-
timators of Water-Level Fluc-
tuation
This appendix is an image of the Reproducible Research Record for eval-
uation of the statistical properties of alternative estimators of water-level
extremes. This reproducible research record (Ince et al., 2012) was im-
plemented by the R noweb file wl est simulation2.Rnw. Execution of that
file from R replicates the analysis and produces the LATEX source file from
which this appendix was generated. Thus, this appendix contains the printed
record of the analysis.

Objective

The objective of this Monte Carlo simulation study is to explore the prop-
erties of ad hoc estimators of the maximum and range from hydrographs.

Implementation

This analysis used R version 2.14.0 (R Development Core Team, 2011). Com-
putations were performed on umesc-250.er.usgs.gov running under Ubuntu
Gnu/Linux 10.04LTS. This document was generated by the Sweave facility
(Leisch, 2003) included with R.

Problem Description

Modeling of the effects of water-level fluctuations on the nesting success of
common loons requires estimates of location and scale of extreme statistics.
For example, loon nesting success is plausibly affected by the maximum
daily rate of water-level increase and the maximum net increase in water
level during the 60-day putative nesting season. Water-surface elevations
are typically recorded at regularly spaced temporal intervals (e.g., weekly,
daily, etc.). Therefore the quality of water-level data varies among lakes.
From some lakes as few as six readings might be available and from others
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as many as 60 readings. Although water level varies continuously with time,
the observed maxima from daily data likely provide reasonable (essentially
error-free) estimates of the maxima. However that is not the case where
few readings are available. We need plausible estimates of the maxima and
ranges of functions of water-surface elevations and measures of uncertainty.

For some random variable Xi, i = 1 · · ·n having distribution function
f(X|θ), define X1:n ≤ · · · ≤ Xn:n as the ordered set of variates. The max-
imal order statistic is denoted by Xn:n, the minimal order statistic is de-
noted by X1:1 and the range is denoted by W = Xn:n −X1:n. The limiting
distribution of Xn:n does not generally exist (David and Nagaraja, 2003).
The assumption of finite populations of water-level readings holds approx-
imately because the best water-level recordings from Minnesota lakes are
made daily, and diel variation is likely to be insignificant. Therefore we
make that assumption. Let x denote an observable sample from X. Balakr-
ishnan et al. (2003) derived bounds on expectations of sample order statistics
x1:n ≤ · · · ≤ xn:n from finite populations, but those bounds do not inform
bounds on the X1:n ≤ · · · ≤ Xn:n. The famous “German tank problem”
(Ruggles and Brodie, 1947) provides an estimate of the total number of
items (observed and unobserved) based on a sample of (observed) sequen-
tial identifiers. In contrast, we need estimates of finite-population extremes
based on a sample of real-valued observations. A search of the literature did
not reveal a general solution supported by sampling theory.

Therefore we resort to evaluation of a set of ad hoc estimators. Let
XN = {Xi}, i = 1, · · · , N denote a set of water levels of length N , and let
xn = {xi}, i = 1, · · · , n for n ≤ N denote a sample of observations from XN .
We seek estimates of the maximum and range of XN based on information
contained in xn. Let {X1:N , XN :N} and {x1:n, xn:n} denote the extremes of
XN and xn, respectively. Trivially x1:n = X1:N and xn:n = XN :N for n = N .
We evaluate the following ad hoc estimators of XN :N :

X̂N :N,1 = xn:n (A-1)

X̂N :N,2 = xn:n + δ̄x

√
N − n
N

(A-2)

X̂N :N,3 = xn:n +
s√
n

√
N − n
N

(A-3)

X̂N :N,4 = xn:n + 1.5
s√
n

√
N − n
N

(A-4)

where δ̄x is the average of first differences of xi:n. Each of those estimators
satisfies X̂N :N = xn:n for n = N . The naive estimate X̂N :N,1 may under-
estimate XN :N for n < N , and the bias is likely to be severe for small n.
X̂N :N,2 adds the product of the sample mean of x and the finite-population

correction factor to the observed maximum. X̂N :N,3 adds one standard error

of the estimate of X̄ to the observed maximum xn:n. Last X̂N :N,4 adds 1.5
times the standard error of the estimate of X̄ to the observed maximum
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xn:n. The population range is defined as WN = XN :N −X1:N , and we seek
estimates based on the following ad hoc estimators

ŴN,1 = xn:n − x1:n (A-5)

ŴN,2 = X̂N :N,2 −

(
x1:n − δ̄x

√
N − n
N

)
(A-6)

ŴN,3 = X̂N :N,3 −

(
x1:n −

s√
n

√
N − n
N

)
(A-7)

ŴN,4 = X̂N :N,3 −

(
x1:n − 1.5

s√
n

√
N − n
N

)
(A-8)

where δ̄ is the average of the lag-1 differences in x1:n, · · · , xn:n, similar to the
corresponding estimates of XN :N . Lacking general limiting distributions for
X̂N :N,j and ŴN,j , j = 1, · · · , 4, we must resort to Monte Carlo simulation
to compare the performances of the estimators.

We evaluate the performances of the estimators based on relative bias
given by

rBias =

∑M
i=1

(
θ̂i − θ

)
θM

where the θ̂i are M estimates of some parameter θ, and based on relative

root mean-squared error given by rRMSE =
√
MSE
θ where

MSE =

∑M
i=1

(
θ̂i − θ

)2
M

.

Distributions

Water-level data in lakes have characteristics that aid identification of plau-
sible distributions. Water levels have lower and upper bounds in reservoirs
and drainage lakes, and even practical annual limits may be assumed for
most seepage lakes. The lower bounds in reservoirs and drainage lakes are
fixed by the lower control point of dams and the elevation of the outlet,
respectively. Upper bounds of reservoirs and drainage lakes are fixed by
emergency spillways and alternate over-land flow paths. For those reasons,
the distributions of both XN :N and WN are likely to have compact sup-
port. However it is also useful to investigate properties of estimators from
distributions that have long tails.

To evaluate properties of X̂N :N,j , j = 1, · · · , 4 we selected four distribu-
tions that present a wide range of challenges to estimation of XN :N . We
drew N = 60 random values which were defined as populations from which
samples of size n were drawn, at random, for the simulations. We drew X1

as the sum of a deterministic increasing trend and an AR(4) process gener-
ated from N (0, 0.01) innovations and AR parameter θ = (0.6, 0.2, 0.1, 0.08).
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The series X1 mimics the natural trend of increasing water-levels during the
spring nesting season, and may typify natural conditions. We drew X2 as
an AR(4) process similar to X1 but scaled to zero mean and variance 0.16.
We drew X3 as an ARMA(4,4) process based on AR parameter θ and MA
parameter φ = θ. Last, we drew X4 ∼ N (0, 1) (white noise). The series
X4 almost certainly presents a much greater challenge to estimation of Xn:n

than natural hydrographs because of the implausible serial independence
and large relative variation.

R> library(lattice)

R> ltheme <- canonical.theme(color = FALSE) ## in-built B&W theme

R> ltheme$strip.background$col <- "transparent" ## change strip bg

R> lattice.options(default.theme = ltheme) ## set as default

R> library(coda)

R> stdize <- function(x){(x - mean(x))/sd(x)}

R> set.seed(7351335)

R> N <- 60

R> days <- 1:N

R> # Simple mimic [Deterministic trend + AR(4), Var(X1) approx. = 0.05 ]

R> X1 <- arima.sim(list(order=c(4,0,0), ar=c(0.6,0.2,0.1,0.08)),

+ n=N, rand.gen=rnorm)

R> X1 <- X1/12

R> X1 <- ((0:(N-1))/(N-1)) + X1

R> X1 <- stdize(X1)

R> # AR(4) N(0,0.01)

R> X2 <- arima.sim(list(order=c(4,0,0), ar=c(0.6,0.2,0.1,0.08)),

+ n=N, rand.gen=rnorm, sd=0.1)

R> X2 <- (X2 - .006)/.396

R> X2 <- stdize(X2)

R> # ARMA(4,4) N(0,0.01)

R> X3 <- arima.sim(list(order=c(4,0,4), ar=c(0.6,0.2,0.1,0.08),

+ ma=c(0.6,0.2,0.1,0.08)), n=N, rnorm, sd=0.1)

R> X3 <- (X3-0.039)/.757

R> X3 <- stdize(X3)

R> # White noise -- N(0,1)

R> X4 <- arima.sim(list(order=c(0,0,0)), n=N, n.start=1,

+ rand.gen=rnorm)

R> X4 <- stdize(X4)

R> X <- cbind(X2,X3,X4)

R> X <- as.mcmc(X)

R> fig1 <- acfplot(X,aspect=1,ylim=c(-.2,1),xlab="Days", layout=c(3,1),

+ col="black",

+ strip = strip.custom(bg="white", factor.levels =

+ c(expression(X[2]),

+ expression(X[3]),expression(X[4]))))

R> days_l <- rep(days,4)
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R> X <- c(X1,X2,X3,X4)

R> var <- c(rep("X1",N),rep("X2",N),rep("X3",N),rep("X4",N))

R> df <- data.frame(days_l,X,var)

R> fig2 <- xyplot(X~days_l|var,data=df,layout=c(4,1), col="black",

+ type="l",xlab="Days",ylab="X",

+ strip = strip.custom(bg="white",

+ factor.levels =

+ c(expression(X[1]),expression(X[2]),

+ expression(X[3]),expression(X[4]))))

R> rm(days, days_l, X, X1, X2, X3, X4)
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Figure A-1. Sample autocorrelation functions for Xi, i = 2, . . . , 4.

Sample autocorrelation functions (ACFs) for X2–X4 are given in Fig.
(A-1). The ACF of the stationary part of X1 is identical to the ACF of
X2. Sample series representing 60-day segments of X1–X4 are given in Fig.
(A-2).
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Figure A-2. Example 60-d segments of Xi, i = 1, . . . , 4.
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Monte Carlo Simulations

We simulate 500 populations of 60-day hydrographic records. Typically,
water levels are recorded at regular time intervals. From each population
we draw samples, without replacement, of size n = 6, 10, 15, 20, 30, 40, 50, 60.
For samples of size n ≤ 30 selection from the populations is systematic
beginning with a random start. For samples of size 40 and 40, we make
random draws without replacement. Samples of size 60 include the entire
populations. We then compute the sample estimators, relative bias, and
relative MSE.

R> # SET PARAMETERS FOR SIMULATION

R> n <- c(6, 10, 15, 20, 30, 40, 50, 60) # Sample sizes

R> N <- 60 # "Population" size

R> Nreps <- 500 # No. reps in simulation

R> set.seed(7351337) # Fix RNG seed

R> theta <- c(0.6,0.2,0.1,0.08) # AR & MA parameter choices

R> fpc <- sqrt((N-n)/(N)) # Finite pop. correction

R> # INITIALIZE STORAGE ARRAYS

R> # Array indexing: h indexes Nreps replicate "populations"

R> # i (implicit) indexes 4 generating distributions

R> # j indexes length(n) sample sizes

R> # k indexes estimator

R> # l (implicit) indexes "population" size, N

R> # X[h,i] "Population" h from distribution i

R> # maxX[h,i] True max from X[h,i]

R> # obsMax[h,i,j] Observed max in rep h, dist. i and sample-size j

R> # obsW[h,i,j] Observed range in h,i,j

R> # estMax[h,i,j,k] Estimated max in h,i,j based on estimator k

R> # estW[h,i,j,k] Estimated range in h,i,j based on estimator k

R> X <- array(0, dim=c(N,4))

R> maxX <- W <- array(0, dim=c(Nreps,4))

R> obsMax <- obsW <- obsMin <- array(0, dim=c(Nreps, 4, length(n)))

R> estMax <- estW <- array(0, dim=c(Nreps, 4, length(n), 4))

R> # SIMULATE AD HOC ESTIMATION

R> for (h in 1:Nreps){

+ # Generate h "populations" from the i=4 distributions

+ Xdum <- arima.sim(list(order=c(4,0,0), ar=theta), n=N,

+ rand.gen=rnorm)

+ Xdum <- Xdum/12

+ X[,1] <- as.vector(((0:(N-1))/(N/3)) + Xdum)

+ X[,1] <- round(stdize(X[,1]), digits=5)

+ Xdum <- arima.sim(list(order=c(4,0,0), ar=theta), n=N,

+ rand.gen=rnorm, sd=0.1)

+ X[,2] <- as.vector((Xdum - .006)/.396)

+ X[,2] <- round(stdize(X[,2]), digits=5)
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+ Xdum <- arima.sim(list(order=c(4,0,4), ar=theta, ma=theta),

+ n=N, rand.gen=rnorm, sd=0.1)

+ X[,3] <- as.vector((Xdum-0.039)/.757)

+ X[,3] <- round(stdize(X[,3]), digits=5)

+ X[,4] <- rnorm(N, mean=0, sd=1)

+ X[,4] <- round(stdize(X[,4]), digits=5)

+ # Find "population" max and range for rep. h and dist. i.

+ maxX[h,] <- apply(X, 2, max)

+ W[h,] <- maxX[h,] - apply(X, 2, min)

+ # Draw, from the "populations", temporally systematic samples

+ # beginning with random starts, and estimate max and range;

+ # j indexes sample size vector n.

+ st <- round(runif(length(n), rep(1,8), N/n)) # random starts

+ inc <- floor(N/n) # systematic increment

+ minc <- sdx <- array(0, dim=c(4,length(n)))

+ for (j in 1:length(n)){

+ if (n[j]<=30) {indx <- st[j] + (0:(n[j]-1))*inc[j]} else

+ {indx <- sort(sample(1:60,n[j],replace=FALSE))}

+ x <- X[indx,] # Draw the sample

+ minc[,j] <- abs(apply(apply(x,2,sort),2,mean))

+ sdx[,j] <- apply(x,2,sd)

+ obsMax[h,,j] <- apply(x, 2, max)

+ obsMin[h,,j] <- apply(x, 2, min)

+ obsW[h,,j] <- obsMax[h,,j] - obsMin[h,,j]

+ estMax[h,,j,1] <- obsMax[h,,j]

+ estMax[h,,j,2] <- obsMax[h,,j] + fpc[j]*minc[,j]

+ estMax[h,,j,3] <- obsMax[h,,j] + (sdx[,j]/sqrt(n[j]))*fpc[j]

+ estMax[h,,j,4] <- obsMax[h,,j] + 1.5*(sdx[,j]/sqrt(n[j]))*fpc[j]

+ estW[h,,j,1] <- obsMax[h,,j] - obsMin[h,,j]

+ estW[h,,j,2] <- estMax[h,,j,2] -

+ (obsMin[h,,j] - fpc[j]*minc[,j])

+ estW[h,,j,3] <- estMax[h,,j,3] -

+ (obsMin[h,,j] - (sdx[,j]/sqrt(n[j]))*fpc[j])

+ estW[h,,j,4] <- estMax[h,,j,4] -

+ (obsMin[h,,j] - 1.5*(sdx[,j]/sqrt(n[j]))*fpc[j])

+ }

+ }

R> rbias.Max <- array(0,dim=c(4,length(n),4))

R> rRMSE.Max <- array(0,dim=c(4,length(n),4))

R> rbias.W <- array(0,dim=c(4,length(n),4))

R> rRMSE.W <- array(0,dim=c(4,length(n),4))

R> for(i in 1:4){

+ for(j in 1:length(n)){

+ for(k in 1:4) {

+ rbias.Max[i,j,k] <-

+ mean((estMax[,i,j,k]-maxX[,i])/maxX[,i])
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+ rRMSE.Max[i,j,k] <-

+ sqrt(mean(((estMax[,i,j,k]-maxX[,i])/maxX[,i])^2))

+ rbias.W[i,j,k] <- mean((estW[,i,j,k]-W[,i])/W[,i])

+ rRMSE.W[i,j,k] <-

+ sqrt(mean(((estW[,i,j,k]-W[,i])/W[,i])^2))

+ }

+ }

+ }

R> # Maximum Plot

R> lattice.options(default.theme = modifyList(standard.theme(color = FALSE),

+ list(strip.background = list(col = "transparent"))))

R> data1 <- data.frame(rbias.Max)

R> Value <- c(data1[1,1:32],data1[2,1:32],data1[3,1:32],data1[4,1:32])

R> Value <- round(as.numeric(Value),digits=5)

R> DistStat <- c(rep("max(X1) Bias",32),rep("max(X2) Bias",32),

+ rep("max(X3) Bias",32),rep("max(X4) Bias",32))

R> Pop <- c(rep("X1",32),rep("X2",32),rep("X3",32),rep("X4",32))

R> Statistic <- rep("rBias",32)

R> Estmnd <- rep("Maximum",32)

R> Estimator <- c(rep(1,8),rep(2,8),rep(3,8),rep(4,8))

R> sampn <- rep(n[1:8],4)

R> df <- data.frame(Estmnd,Statistic,Pop,DistStat,Estimator,sampn,Value)

R> colnames(df) <- c("Estimand","Statistic","Distribution",

+ "DistStat","Estimator","n","Value")

R> data2 <- data.frame(rRMSE.Max)

R> Value2 <- c(data2[1,1:32],data2[2,1:32],data2[3,1:32],data2[4,1:32])

R> Value2 <- round(as.numeric(Value2), digits=5)

R> DistStat2 <- c(rep("max(X1) RRMSE",32),rep("max(X2) RRMSE",32),

+ rep("max(X3) RRMSE",32),rep("max(X4) RMSE",32))

R> Statistic <- rep("rRMSE",32)

R> df2 <- data.frame(Estmnd,Statistic,Pop,DistStat2,Estimator,sampn,Value2)

R> colnames(df2) <- c("Estimand","Statistic","Distribution",

+ "DistStat","Estimator","n","Value")

R> df <- rbind(df,df2)

R> write.table(df,file='wl_sim_max_results.txt',row.names=FALSE)
R> legend1 <- list(space="top",title="Estimator",cex.title=.9,

+ text=c("1:","2:","3:","4"),type="l",lty=c(1,2,3,4),

+ points=FALSE,lines=TRUE,columns=4,cex=0.9,

+ col=rep("black",4))

R> #legend1 <- list(space="top",title="Estimator",cex.title=.9,type="l",

R> # columns=4,cex=0.9,col="black",

R> # lines=list(lty=c(1,2,3,4),points=FALSE,col=rep("black",4)))

R> maxPlot <- xyplot(Value~n|DistStat,df,groups=Estimator,layout=c(4,2),

+ type="l",lty=c(1,2,3,4),auto.key=legend1,ylab="Value",

+ col="black",xlab="Sample Size",strip =

+ strip.custom(factor.levels =
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+ c(expression(X[1]-Bias),expression(X[2]-Bias),

+ expression(X[3]-Bias),expression(X[4]-Bias),

+ expression(X[1]-RRMSE),expression(X[2]-RRMSE),

+ expression(X[3]-RRMSE),expression(X[4]-RRMSE))))

R> # Range Plot

R> data1 <- data.frame(rbias.W)

R> Value <- c(data1[1,1:32],data1[2,1:32],data1[3,1:32],data1[4,1:32])

R> Value <- round(as.numeric(Value), digits=5)

R> Estmnd <- rep("Range",32)

R> DistStat <- c(rep("range(X1) Bias",32),rep("range(X2) Bias",32),

+ rep("range(X3) Bias",32),rep("range(X4) Bias",32))

R> Pop <- c(rep("X1",32),rep("X2",32),rep("X3",32),rep("X4",32))

R> Statistic <- rep("rBias",32)

R> Estimator <- c(rep(1,8),rep(2,8),rep(3,8),rep(4,8))

R> df <- data.frame(Estmnd,Statistic,Pop,DistStat,Estimator,sampn,Value)

R> colnames(df) <- c("Estimand","Statistic","Distribution",

+ "DistStat","Estimator","n","Value")

R> data2 <- data.frame(rRMSE.W)

R> Value2 <- c(data2[1,1:32],data2[2,1:32],data2[3,1:32],data2[4,1:32])

R> Value2 <- round(as.numeric(Value2), digits=5)

R> DistStat2 <- c(rep("range(X1) RMSE",32),rep("range(X2) RMSE",32),

+ rep("range(X3) RMSE",32),rep("range(X4) RMSE",32))

R> Statistic <- rep("rRMSE",32)

R> df2 <- data.frame(Estmnd,Statistic,Pop,DistStat2,Estimator,sampn,Value2)

R> colnames(df2) <- c("Estimand","Statistic","Distribution",

+ "DistStat","Estimator","n","Value")

R> df <- rbind(df,df2)

R> write.table(df,file='wl_sim_range_results.txt',row.names=FALSE)
R> rangePlot <- xyplot(Value~n|DistStat,df,groups=Estimator,layout=c(4,2),

+ type="l",lty=c(1,2,3,4),auto.key=legend1,ylab="Value",

+ col="black",xlab="Sample Size",strip =

+ strip.custom(factor.levels =

+ c(expression(X[1]-Bias),expression(X[2]-Bias),

+ expression(X[3]-Bias),expression(X[4]-Bias),

+ expression(X[1]-RRMSE),expression(X[2]-RRMSE),

+ expression(X[3]-RRMSE),expression(X[4]-RRMSE))))

Results

The performance of the four estimators of the population maximum is shown
in Fig. A-3. The naive estimator (1) underperforms the ad hoc estimators
in terms of relative RMSE and relative bias. The performance of the four
estimators of the population range is shown in Fig. A-4. The naive estimator
(1) underperforms the ad hoc estimators in terms of relative RMSE and
relative bias.
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Figure A-3. Relative root mean-squared error (RRMSE) and rela-
tive bias (Bias) of four ad-hoc estimators of the unknown population
maximum generated from four distributions Xi, i = 2, . . . , 4. The dis-
tribution of X1 is similar to natural hydrographs and the white-noise
process that generate X4 probably represents an extreme challenge to
estimation of the population maximum. Samples were drawn from 500
independent replicates of each distribution.
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Figure A-4. Relative root mean-squared error (RRMSE) and relative
bias (Bias) of four ad-hoc estimators of the unknown population range
generated from four distributions Xi, i = 2, . . . , 4. The distribution
of X1 is similar to natural hydrographs and the white-noise process
that generate X4 probably represents an extreme challenge to estimation
of the population range. Samples were drawn from 500 independent
replicates of each distribution.
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Appendix B
Hierarchical Bayesian Models
of Nesting Success of Common
Loons
This appendix is an image of the Reproducible Research Record for eval-
uation of the statistical properties of alternative estimators of water-level
extremes. This reproducible research record (Ince et al., 2012) was imple-
mented by the R noweb file loon-models.Rnw. Execution of that file from R
replicates the analysis and produces the LATEX source file from which this
appendix was generated. Thus, this appendix contains the printed record of
the analysis.

Introduction

Objective

The objective of this analysis is to identify any effects of water-level rises
on the nesting success of common loons Gavia immer on Minnesota lakes.
Nesting success is quantified by counts of loon chicks during late summer
(July–August). Data were provided by the Minnesota Department of Nat-
ural Resources from two loon-monitoring programs staffed by citizen volun-
teers. The LoonWatcher (LW) program records counts of adults, nesting
pairs and chicks from undefined partial or complete circuits of lakes. The
Minnesota Loon Monitoring Program (MLMP) records only counts of adults
and chicks. Covariates include estimates of measures of water-level increases
during the presumptive 60-day nesting season, as determined from the day of
ice-out, a bald eagle regional abundance index obtained from the Wisconsin
Department of Natural Resources, and the day-of-the year of ice-out.

Implementation

This analysis used R version 2.15.1 (R Development Core Team, 2011).
Bayesian Markov Chain Monte Carlo sampling was implemented using the
R package BRugs version 0.7-7 (Thomas et al., 2006). Computations were
performed on umesc-250.er.usgs.gov running under Ubuntu Gnu Linux 10.04.
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Data Description

The data are from the Minnesota Loon Monitoring Program (MLMP), the
Minnesota Volunteer LoonWatcher Program (LWP) and from the National
Park Service Voyageurs National Park (VOYA), and are documented in
Metadata for Data File loon comb.csv, S. Gutreuter, April 1, 2011. The LWP
and MLMP data are collected by citizen volunteers. Data were obtained
from 93 lakes of at least 405 hectares in surface area, and from variable
numbers of years within those lakes. The loon data are described more
thoroughly in Metadata for Data File loon comb.csv (S. Gutreuter, 13 De-
cember 2011).

All sources contain counts of chicks and adults made in late summer, so
that the variable chicks is a surrogate for the numbers of fledged loons. The
LWP and VOYA data also contain counts of nesting pairs. Only nesting
pairs produce chicks, so that pairs is the more appropriate offset variable for
chicks.

Water-level data were obtained from various sources, including the LWP
and MLMP. Water-level readings were available from variable and sporadic
dates within lakes. Only water-level data from within 60-day windows be-
ginning with the of nesting are relevant. The maximum of the daily rates
of water-level rise (max dwldt 60; cm · d−1) and the maximum amplitude of
water-surface elevation (max wldif 60; cm) were computed from within the
60-day windows (ret1 = 1). Details of estimation of water-level covariates
are given in Reproducible Research Record: Monte Carlo Simulation Study
of Properties of Ad Hoc Estimators of Extremes of Water-Level Fluctuation
(S. Gutreuter and C. Spanbauer, 18 November 2011).

Data were retained for analysis from those lakes from which there were
at least three years of loon counts and at least six water-level measurements
within each 60-day putative nesting season.

Data extraction

Extract the loon-count and water-level data from loon_comb.csv and ex-
tract the Wisconsin bald eagle nest index from EagelNestSurvey.csv:

R> library(BRugs)

R> library(xtable)

R> library(moments)

R> library(latticeExtra)

R> library(arm)

R> setwd("/home/sgutreuter/projects/NRPP-Voya/R/loons")

R> old.par <- par

R> options(SweaveHooks = list(fig=function() par(mar=c(5.1,4.1,1.1,2.1))))

R> datdir <- paste((Sys.getenv("DATA")), "/projects/NRPP-Voya/Loons/", sep="")

R> bugsdir <- paste((Sys.getenv("HOME")),

+ "/projects/NRPP-Voya/R/loons/BUGS/", sep="")

R> eagledata <- read.csv(paste(datdir, "EagleNestSurvey.csv", sep=""))
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R> loondata <- read.csv(paste(datdir, "loon_comb.csv", sep=""))

R> loondata <- loondata[(!loondata$adults == 0 & loondata$ret1 == 1),]

R> ## Omit records having implausible chick and/or pair counts:

R> ## -------------------------------------------------------------------

R> ## 9 chicks and 1 pair were reported from Birch Lake (Todd Co.)

R> ## during 2002. That is impossible and the data are omitted.

R> loondata <- loondata[!(loondata$lkcode==770084 & loondata$year==2002),]

R> ## 14 chicks and 3 pairs were reported from Kabekona L. (Hubbard Co.)

R> ## during 1997. 4.6 chicks/pair is implausible, and data omitted.

R> loondata <- loondata[!(loondata$lkcode==290075 & loondata$year==1997),]

R> ## 4 chicks from 1 pair was reported from Cross L. (Crow Wing Co.)

R> ## during 1980. That ratio has not been reported elsewhere, and

R> ## the next highest ratio is 3:1, which is known to be possible, but

R> ## rare. The 1980 Cross Lake record is omitted.

R> loondata <- loondata[!(loondata$lkcode==180312 & loondata$year==1980),]

R> ## -------------------------------------------------------------------

R>

R> loondata <- merge(loondata, eagledata, by.x="year", by.y="year")

R> loondata <- loondata[order(loondata$source, loondata$lkcode, loondata$year),]

R> ## Hold out selected data from model fitting to enable out-of-sample

R> ## predictive evaluation by setting chicks <- NA.

R> chicks.temp <- rep(-9,nrow(loondata))

R> chicks.holdouts <- rep(-9,nrow(loondata))

R> loondata$chicks.all <- loondata$chicks

R> loondata$pairs.all <- loondata$pairs

R> for(i in 1:nrow(loondata)){

+ if(loondata$holdout[i]==1){

+ chicks.holdouts[i] <- loondata$chicks[i]

+ chicks.temp[i] <- NA}

+ else{ chicks.holdouts[i] <- NA

+ chicks.temp[i] <- loondata$chicks[i]}

+ }

R> loondata$chicks <- chicks.temp

R> loondata$chicks.holdouts <- chicks.holdouts

R> rm("chicks.temp")

R> year <- loondata$year

R> yr <- as.factor(year-1978)

R> lake <- as.factor(loondata$lake)

R> lkcode <- as.factor(loondata$lkcode)

R> lkno <- charmatch(lkcode, unique(lkcode))

R> adults <- loondata$adults

R> pairs <- loondata$pairs

R> chicks <- loondata$chicks

R> ix <- (!is.na(loondata$pairs.all)) & loondata$pairs.all>0

R> cpp.obs <- loondata$chicks.all[ix]/loondata$pairs.all[ix]

R> max.cpp.obs <- max(cpp.obs,na.rm=TRUE)
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R> eagleindx <- (loondata$eaglenests -

+ mean(loondata$eaglenests))/sd(loondata$eaglenests)

R> survey <- as.factor(loondata$source)

R> mean.doy.io <- round(mean(loondata$doy_io))

R> doy_io <- loondata$doy_io - mean.doy.io

R> max.dwdt <- loondata$est_max_dwl_ddoy60

R> mean.max.dwdt <- mean(max.dwdt)

R> max.dwdt <- max.dwdt - mean.max.dwdt

R> v.max.dwdt <- loondata$v_est_max_dwl_ddoy60

R> v.max.dwdt[v.max.dwdt==0] <- 0.0001

R> tau.max.dwdt <- 1/v.max.dwdt

R> max.dw <- loondata$est_delta_wl60

R> mean.max.dw <- mean(max.dw)

R> max.dw <- max.dw - mean.max.dw

R> v.max.dw <- loondata$v_est_w_diffwl60

R> v.max.dw[v.max.dw==0] <- 0.0001

R> tau.max.dw <- 1/v.max.dw

R> N <- length(adults)

R> nlakes <- max(lkno)

R> if ( !file.exists(paste(bugsdir, "chains", sep="")))

+ dir.create(paste(bugsdir,"chains",sep=""))

R> if ( !file.exists(paste(bugsdir, "inputs", sep="")))

+ dir.create(paste(bugsdir,"inputs",sep=""))

R> if ( !file.exists(paste(bugsdir,"preds", sep="")))

+ dir.create(paste(bugsdir,"preds",sep=""))

R> predir <- paste(bugsdir,"preds/",sep="")

R> dicNode <- c("chicks","pairs","total")

R> dicMod <- data.frame(row.names=NULL)

R> dicMod2 <- data.frame(row.names=NULL)

R> plot1 <- histogram(loondata$est_max_dwl_ddoy60, type="count", col="white",

+ xlab="max(daily water-level rise) (cm/day)")

R> plot2 <- histogram(loondata$est_delta_wl60, type="count", col="white",

+ xlab="max(water-level increase) (cm)")

R> plot3 <- xyplot(loondata$eaglenests ~ year, type="p",

+ col=c(rep("black",2)), lty=c(0,1),

+ xlab="Year", ylab="Bald eagle nests")

R> plot4 <- histogram(loondata$doy_io, type="count", col="white",

+ xlab="Day of the year of ice breakup")

Validation Samples

Some samples were withheld from model fitting to evaluate out-of-sample
predictive performance (Table B-1). Data were withheld from the VOYA
lakes from multiple years under operation of both the 1970 and 2000 Rule
Curves. There was some overlap between the LoonWatcher and MLMP sur-
veys; data were withheld from the MLMP surveys where overlap occurred.
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Finally, we place some premium on predictive performance on large lakes.
The LoonWatcher surveys spanned many years on both Leach and Vermilion
Lakes, so we withheld a subset of those samples.

Table B-1. List of samples withheld from model fitting and reserved for evaluation of
out-of-sample predictive performance

Survey Lake County Year(s) withheld Samples

LoonWatcher Leech Cass 1993,1995,2004–05 4
LoonWatcher Vermilion St Louis 2005–10 6
MLMP Farm Island Aitkin 2001–02,2007–09 5
MLMP Height of Land Becker 2009 1
MLMP Island Becker 1996,1998–2009 14
MLMP Otter Tail Otter Tail 2004,2007 3
MLMP Vermilion St Louis 1995–2000 6
MLMP White Earth Becker 2003–09 6
VOYA Kabetogama St Louis 1983–1985, 1997, 2001, 2003, 2005, 2007, 2009 9
VOYA Namakan St Louis 1983–1985, 1997, 2001, 2003, 2005, 2007, 2009 9
VOYA Rainy St Louis 1983–1985, 1997, 2001, 2003, 2005, 2007, 2009 9
VOYA Sand Point St Louis 1983–1985, 1997, 2001, 2003, 2005, 2007, 2009 9

Totals 81

Model Description

Chicks are produced only by mated pairs, so that pair count is an obvious
predictor of chick counts. Pair counts were recorded during LoonWatcher
and NPS surveys, but not during MLMP surveys. Therefore pair counts
from the MLMP surveys must be estimated from adult counts, and that
is accomplished with an imputation-like model using data from all survey
types. Counts of adult loons are assumed, of practical necessity, to have
been measured without error. Adult counts require only identification of
adult loons, which is an easy task. In addition, identification of mated pairs
requires correct identification of associations between adults based only on
survey sightings, which is affected by the spatial locations of males and
females at particular points in time. Therefore it is plausible that pair
counts are subject to greater error than are adult counts, and the models
incorporate that estimation error.

Plausible models of nesting success predict the numbers of chicks per
nesting pair as non-negative functions of alternative measures of water-level
fluctuation and other plausible covariates. Further, individual lakes may
have features that affect nesting success, including latent covariates such
as prey availability and environmental contaminants. Therefore all models
include lake-specific random effects to capture such latent sources of varia-
tion. Denote the numbers of chicks, mated pairs and adults counted on lake
i during year j as Yij , Xij and Wij , respectively, and let zij denote a vector
of covariates. Values of Xij were not recorded by the MLMP, and we also as-
sume a multiplicative measurement error structure given by Xij = λX,ij + εi
where λX,ij = E (Xij) and εj is measurement error. Therefore we adopt a
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possibly over-dispersed Poisson model for pair counts Xij given by

Xij ∼ Po (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εi

εi ∼ N (0, τX)

(θ1, θ2) ∼ N (0,Ωθ)

Ωθ ∼ Wishart (ρθRθ, ρθ) ,

with the addition of an appropriate prior on τx. We allow for correlation
among θ = (θ1θz) through the multivariate normal prior distribution having
mean vector 0 and precision matrix Ωθ. We give Ωθ the most vague hyper-
prior that is still proper by choosing the dimension of θ for ρθ and where
Rθ is a scaling matrix of the order of the covariance matrix Σθ = Ω−1θ . The
statistical models of reproductive success are elaborations on the general
form

Yij ∼ Po (λY,ij)

λY,ij = λX,ij exp (β1,i + βzzij)

β1,i ∼ f (β1, τβ1)

τβ1 ∼ Gamma (3, 1)

(β1, βz) ∼ N (0,Ωβ)

Ωβ ∼ Wishart (ρβRβ, ρβ) ,

where β1,i are lake-specific random-effects parameters, βz is a parameter vec-
tor associated with zij . Note that the expected values of pair counts λX,ij
appear as offsets, so that the exponential function in λY,ij is a dimensionless
model of the numbers of chicks per pair. We borrow strength across lakes
by assuming that the β1,i share a common mean β1 in the prior distribu-
tion f (β1, τβ1), and allow for correlation among β = (β1, βz) through the
multivariate normal prior distribution having mean vector 0 and precision
matrix Ωβ. The Gamma(3, 1) distribution provides a reasonably vague hy-
perprior specification for the precision τβ1 in the prior for β1. We give Ωβ

the most vague hyperprior that is still proper by choosing the dimension of
β for ρβ and where Rβ is a scaling matrix of the order of the covariance
matrix Σβ = Ω−1β .

Covariates

Covariates are given in Table B-39
The covariate vector z comprises several variables (Table B-39). The

production and survival of chicks through late July is likely influenced by
several factors, including spring water-level rises. The hypothetical mecha-
nism for the effect of water-level fluctuation is nest flooding. Mated pairs
may respond to rising water levels by building up the elevation of the ex-
isting nest or, if inundation occurs, by abandoning the nest and, perhaps,
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Table B-2. List of covariates

Covariate Description

max.dwdt Maximum of daily water-level rises (cm·day−1), centered
v.max.dwdt Variance of max.dwdt
max.dw Maximum water-level rise (cm), centered
v.max.dw Variance of max.dw
eagleindex Standardized WI eagle nest counts
doy io Day of the year of ice-out, centered

max(daily water−level rise) (cm/day)
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Figure B-1. Marginal distribution of the estimated maxima of daily
rates of water-level increase (cm·day−1), computed from presumptive
60-day nesting seasons, in combinations of lakes and years from which
loon nesting data were selected.
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attempting nesting at a higher elevation. Eggs or chicks may be lost dur-
ing abandonment. Therefore our primary focus is on measures of rise in
water-surface elevation. Two measures are obvious candidates. First, the
maximum rate of daily rise max.dwdt (cm·day−1)measures the severity of the
most-rapid increase (Fig. B-1). Rapid rates of rise may overwhelm the pairs
ability to build-up the elevation of the existing nest. Second, the maximum
net increase in water-surface elevation max.dw (cm) measures the severity
of flooding during the 60-day nesting period regardless of the rate of increase
(Fig. B-2). Large increases in water-surface elevation may eliminate entire
nesting sites, especially where bank slopes become steep.

max(water−level increase) (cm)

C
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nt
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50

100

150

200

−100 −50 0 50 100 150

Figure B-2. Marginal distribution of the estimated maxima of water-
level increases (cm) during the presumptive 60-day nesting seasons in
combinations of lakes and years from which loon nesting data were se-
lected.

Predation is also an important source of mortality in loon chicks. Poten-
tial predators include mink, racoons, bald eagles, foxes, wolves and bobcats.
Among those, a regional abundance index, eagleindex, is available for bald
eagles. Nest counts of bald eagles have been increasing steadily since at least
1979 (Fig. B-3). Therefore this regional eagle abundance index is correlated
with any monotonic temporal trend, and cannot isolate any pure effect of
eagle abundance. Inclusion in models serves as a marker for trend and may
represent effects of predation by bald eagles.
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Figure B-3. Numbers of occupied bald eagle territories tabulated by
the Wisconsin Bald Eagle and Osprey Surveys (http://dnr.wi.gov/
org/land/wildlife/harvest/harvest.htm).
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Figure B-4. Distribution of day-of-the year of spring ice breakup on
for combinations of lakes and years represented in the Minnesota loon
data.

Appendix B-10



The summer breeding range of common loons spans a climatic gradient.
The earlier spring ice break up on southerly lakes provides loons with a
longer nesting season that may influence nesting success. Therefore doy io,
the (centered) day of the year (counted from January 1) of ice break up
(Fig. B-4) is a plausible covariate for prediction of nesting success.
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Model Fitting and Assessment

Model 1: Maximum daily water level rise and normally dis-
tributed random effects

Description

Model 1 uses the estimated maxima of the daily rates of water-level in-
crease as the water-level predictor covariate. A vague normal distribution is
assumed for the latent random effect of lakes on nesting success.

Let z1,ij denote the estimated maxima of daily rates of water-level in-
crease during the 60-day nesting season (variable est_max_dwl_ddoy in
loon-comb.csv) on lake i during year j, let z2,j denote the (zero-centered)
regional bald eagle abundance index during year j, and let z3,ij denote the
(zero-centered) day of the year of ice breakup. Counts of nesting pairs were
not made by the MLMP so those counts, Xij , must be estimated from counts
of adult loons, denoted Wij . The first model assumes normal distributions
for the lake-specific latent random-effects parameters εj and β1,j and is given
by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp (β1,j + β2z1,ij + β3z2,j + β4z3,ij)

β1,j ∼ N (β1, τβ1)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where τX = 1/σ2X and τβ1 = 1/σ2β1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σ2X and σ2β1 ,
respectively.

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> Model <- 1 ## Model number

R> ##modseed <- as.numeric(Sys.time())
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R> modseed <- 2736736

R> set.seed(modseed)

R> datafile <- paste(bugsdir, "inputs/mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dwdt=max.dwdt, tau.max.dwdt=tau.max.dwdt,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx, doyio=doy_io,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dwdt.cut[i] +

+ beta.chicks[3]*eagleindx[i] + beta.chicks[4]*doyio[i]
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+ )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]

+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dwdt[i] ~ dnorm(mu.max.dwdt[i],tau.max.dwdt[i])

+ mu.max.dwdt.cut[i] <- cut(mu.max.dwdt[i])

+ mu.max.dwdt[i]~dnorm(3,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dnorm(beta.chicks[1],tau.chicks)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-5).

Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> ## Consider eliminating monitoring of Cov.theta and Cov.beta

R> samplesSet(c("theta.pairs", "sigma.pairs",

+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "cpp"))
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Figure B-5. Model 1: BGR plot of parameter vector beta. The chains
have likely converged when the ratio of among-chain to within-chain
variances (red line) equals one.
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R> dicSet()

R> modelUpdate(nsamps)

R> dicTmp <- dicStats()

R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod <- rbind(dicMod,dicTmp)

R> rm(dicTmp)

Table B-3. Model 1: Summary of the joint posterior distribution of the parameters.

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3574 0.0114 7.6070E-04 0.3322 0.3571 0.3777
theta.pairs[2] -0.0004 0.0001 3.9220E-06 -0.0005 -0.0004 -0.0003
sigma.pairs 0.9828 0.1635 6.5240E-03 0.6996 0.9699 1.3360
beta.chicks[1] -0.3739 0.0745 2.0600E-03 -0.5155 -0.3746 -0.2227
beta.chicks[2] -0.0201 0.0086 1.7020E-04 -0.0377 -0.0198 -0.0040
beta.chicks[3] -0.0716 0.0254 6.6550E-04 -0.1214 -0.0718 -0.0218
beta.chicks[4] -0.0009 0.0024 6.2920E-05 -0.0054 -0.0009 0.0038
sigma.chicks 0.4708 0.0531 1.0290E-03 0.3783 0.4669 0.5858
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Figure B-6. Model 1: Posterior densities of the parameter vector β.
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R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]

R> chicks.post.l <- post.chicks$val2.5pc

R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dwdt)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]

R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)

+ for(i in 1:length(x)){

+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))

R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),

+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,max.dwdt=max.dwdt)

R> resids <- resids[!is.na(resids$resid.raw),]

Table B-4. Model 1: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.0444 -0.0900 0.0396
beta.chicks[2] 0.0444 1.0000 0.0180 0.0894
beta.chicks[3] -0.0900 0.0180 1.0000 0.0112
beta.chicks[4] 0.0396 0.0894 0.0112 1.0000
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Figure B-7. Model 1: Posterior predictive performance against chick
counts that were withheld from model fitting (solid symbols). Vertical
bars denote Pr = 0.95 posterior-predictive credible sets for chick counts.
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R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-8. Model 1: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.

R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)

R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])

R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)

Appendix B-19



R> binnedplot((resids$max.dwdt+mean.max.dwdt),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max WL rise (cm/d)",

+ ylab="Raw residuals")

0 5 10 15

−
4

−
2

0
2

4

Max WL rise (cm/d)

R
aw

 r
es

id
ua

ls

●

●
●
●
●●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

● ●

●

Figure B-9. Model 1: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)

R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-5. Model 1: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.8482
Skewness of chick counts 0.9846
Maximum chicks/pair 0.937

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta-chicks-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),

+ q_95=as.numeric(beta2.cs[8]),

+ q_975=as.numeric(beta2.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> Pr_beta2 <- round(sum((beta2.chains<0)/length(beta2.chains)),digits=4)

R> Pbeta2 <- data.frame(Value=Pr_beta2)

R> rm("beta2.chains","Pr_beta2")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(β2 < 0).

The effect of the water-level covariate on nesting success is given by
exp (β1z1,ij).
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R> zz <- seq(from=ceiling(min(max.dwdt)),to=floor(max(max.dwdt)),length.out=50) + mean.max.dwdt

R> wl.tmp <- exp(zz%o%as.numeric(beta2.q))

R> wl.effect <- data.frame(wl.var=zz,

+ wl.mean=wl.tmp[,1],

+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],

+ wl.q975=wl.tmp[,10])

R> write.csv(wl.effect,file=paste(predir,"mod",Model,"_wl.effect.csv",sep=""))

R> wl.effect.plot <- with(wl.effect,

+ xyplot(wl.mean + wl.q05 + wl.q95 + wl.q10 + wl.q90 ~

+ zz, type=rep("l",5), lty=c(1,2,2,4,4),

+ distribute.type=TRUE, col=c(rep("black",5)),

+ xlab="Max(daily water-level rise) (cm/day)",

+ ylab="Nesting success multiplier"))

R> wl.effect.plot <- wl.effect.plot + layer(panel.abline(h=1,lty=3))

Table B-6. Model 1: Pr(beta2 < 0)

Value

0.9934
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Model 2: Maximum daily water level rise and t-distributed
random effects

Description

Model 2 uses the estimated maxima of the daily rates of water-level increase
as the water-level predictor covariate. A vague Student-t distribution is
assumed for the latent random effect of lakes on nesting success.

Let z1,ij denote the estimated maxima of daily rates of water-level in-
crease during the 60-day nesting season (variable est_max_dwl_ddoy in
loon-comb.csv) on lake i during year j, let z2,j denote the (zero-centered)
regional bald eagle abundance index during year j, and let z3,ij denote the
(zero-centered) day of the year of ice breakup. Counts of nesting pairs were
not made by the MLMP so those counts, Xij , must be estimated from counts
of adult loons, denoted Wij . The first model assumes normal distributions
for the lake-specific latent random-effects parameters εj and β1,j and is given
by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp (β1,j + β2z1,ij + β3z2,j + β4z3,ij)

β1,j ∼ t (β1, τβ1 , 3)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where τX = 1/σ2X and τβ1 = 1/σ2β1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σ2X and σ2β1 ,
respectively.

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> Model <- 2 ## Model number

R> ##modseed <- as.numeric(Sys.time())

R> modseed <- 2736736

R> set.seed(modseed)
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R> datafile <- paste(bugsdir, "inputs/mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dwdt=max.dwdt, tau.max.dwdt=tau.max.dwdt,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx, doyio=doy_io,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dwdt.cut[i] +

+ beta.chicks[3]*eagleindx[i] + beta.chicks[4]*doyio[i]

+ )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]

Appendix B-25



+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dwdt[i] ~ dnorm(mu.max.dwdt[i],tau.max.dwdt[i])

+ mu.max.dwdt.cut[i] <- cut(mu.max.dwdt[i])

+ mu.max.dwdt[i]~dnorm(3,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dt(beta.chicks[1],tau.chicks,3)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-11).

Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> samplesSet(c("theta.pairs", "sigma.pairs",

+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "cpp"))

R> dicSet()

R> modelUpdate(nsamps)

R> dicTmp <- dicStats()
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Figure B-11. Model 2: BGR plot of parameter vector beta. The
chains have likely converged when the ratio of among-chain to within-
chain variances (red line) equals one.
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R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod <- rbind(dicMod,dicTmp)

R> rm(dicTmp)

Table B-7. Model 2: Summary of the joint posterior distribution of the parameters.

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3536 0.0144 9.6970E-04 0.3281 0.3550 0.3808
theta.pairs[2] -0.0004 0.0001 4.6060E-06 -0.0005 -0.0004 -0.0002
sigma.pairs 1.0130 0.1759 7.7270E-03 0.7125 0.9975 1.3970
beta.chicks[1] -0.3513 0.0772 2.6860E-03 -0.5086 -0.3497 -0.2066
beta.chicks[2] -0.0194 0.0084 1.7610E-04 -0.0370 -0.0190 -0.0035
beta.chicks[3] -0.0718 0.0254 6.7330E-04 -0.1211 -0.0716 -0.0223
beta.chicks[4] -0.0010 0.0022 6.1970E-05 -0.0055 -0.0010 0.0033
sigma.chicks 0.4014 0.0513 9.4540E-04 0.3123 0.3975 0.5145
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Figure B-12. Posterior densities of the parameter vector β.

R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]

R> chicks.post.l <- post.chicks$val2.5pc
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R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dwdt)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]

R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)

+ for(i in 1:length(x)){

+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))

R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),

+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,max.dwdt=max.dwdt)

R> resids <- resids[!is.na(resids$resid.raw),]

R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

Table B-8. Model 2: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.0362 -0.0760 0.0053
beta.chicks[2] 0.0362 1.0000 0.0078 0.0566
beta.chicks[3] -0.0760 0.0078 1.0000 0.0296
beta.chicks[4] 0.0053 0.0566 0.0296 1.0000
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Figure B-13. Model 2: Posterior predictive performance against chick
counts that were withheld from model fitting (solid symbols). Vertical
bars denote Pr = 0.95 posterior-predictive credible sets for chick counts.
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R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-14. Model 2: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> binnedplot((resids$max.dwdt+mean.max.dwdt),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max WL rise (cm/d)",

+ ylab="Raw residuals")
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Figure B-15. Model 2: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)

R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])

R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)

R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)

R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-9. Model 2: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.8118
Skewness of chick counts 0.9766
Maximum chicks/pair 0.5352

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta-chicks-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),
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+ q_95=as.numeric(beta2.cs[8]),

+ q_975=as.numeric(beta2.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> Pr_beta2 <- round(sum((beta2.chains<0)/length(beta2.chains)),digits=4)

R> Pbeta2 <- data.frame(Value=Pr_beta2)

R> rm("beta2.chains","Pr_beta2")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(β2 < 0).

The effect of the water-level covariate on nesting success is given by
exp (β1z1,ij).

Table B-10. Model 2: Pr(beta2 < 0)

Value

0.9945

R> zz <- seq(from=ceiling(min(max.dwdt)),to=floor(max(max.dwdt)),length.out=50) + mean.max.dwdt

R> wl.tmp <- exp(zz%o%as.numeric(beta2.q))

R> wl.effect <- data.frame(wl.var=zz,

+ wl.mean=wl.tmp[,1],

+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],

+ wl.q975=wl.tmp[,10])

R> write.csv(wl.effect,file=paste(predir,"mod",Model,"_wl.effect.csv",sep=""))

R> wl.effect.plot <- with(wl.effect,

+ xyplot(wl.mean + wl.q05 + wl.q95 + wl.q10 + wl.q90 ~

+ zz, type=rep("l",5), lty=c(1,2,2,4,4),

+ distribute.type=TRUE, col=c(rep("black",5)),

+ xlab="Max(daily water-level rise) (cm/day)",

+ ylab="Nesting success multiplier"))

R> wl.effect.plot <- wl.effect.plot + layer(panel.abline(h=1,lty=3))
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Figure B-16. Model 2: Estimated effect of the peak daily rate of water-
level increase on nesting success of loons. The solid line is the mean
response and the outer and inner sets of dashed lines enclose Bayesian
credible sets having 0.80 and 0.90 posterior probability.
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Model 3: Maximum 60-day water-level rise and normally dis-
tributed random effects

Description

Model 3 uses the estimated maximal increase in water level over the putative
60-day nesting season as the water-level predictor covariate. A vague nor-
mal distribution is assumed for the latent random effect of lakes on nesting
success.

Let z1,ij denote the estimated maxima of water-level increase during the
60-day nesting season (variable est_delta_wl in loon-comb.csv) on lake i
during year j, let z2,j denote the (zero-centered) regional bald eagle abun-
dance index during year j, and let z3,ij denote the (zero-centered) day of the
year of ice breakup. Counts of nesting pairs were not made by the MLMP
so those counts, Xij , must be estimated from counts of adult loons, denoted
Wij . The first model assumes normal distributions for the lake-specific latent
random-effects parameters εj and β1,j and is given by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp (β1,j + β2z1,ij + β3z2,j + β4z3,ij)

β1,j ∼ N (β1, τβ1)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where τX = 1/σ2X and τβ1 = 1/σ2β1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σ2X and σ2β1 ,
respectively.

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> Model <- 3 ## Model number

R> ##modseed <- as.numeric(Sys.time())

R> modseed <- 2736736

R> set.seed(modseed)
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R> datafile <- paste(bugsdir, "inputs/mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dw=max.dw, tau.max.dw=tau.max.dw,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx, doyio=doy_io,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dw.cut[i] +

+ beta.chicks[3]*eagleindx[i] + beta.chicks[4]*doyio[i]

+ )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]
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+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dw[i] ~ dnorm(mu.max.dw[i],tau.max.dw[i])

+ mu.max.dw.cut[i] <- cut(mu.max.dw[i])

+ mu.max.dw[i]~dnorm(0,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dnorm(beta.chicks[1],tau.chicks)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-17).

Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> samplesSet(c("theta.pairs", "sigma.pairs",

+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "cpp"))

R> dicSet()

R> modelUpdate(nsamps)

R> dicTmp <- dicStats()
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Figure B-17. Model 3: BGR plot of parameter vector beta. The
chains have likely converged when the ratio of among-chain to within-
chain variances (red line) equals one.
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R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod <- rbind(dicMod,dicTmp)

R> rm(dicTmp)

Table B-11. Model 3: Summary of the joint posterior distribution of the parameters.

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3496 0.0131 8.8060E-04 0.3255 0.3488 0.3803
theta.pairs[2] -0.0004 0.0001 4.8890E-06 -0.0005 -0.0004 -0.0002
sigma.pairs 1.0210 0.1727 7.2570E-03 0.7261 1.0060 1.4010
beta.chicks[1] -0.3703 0.0723 2.0880E-03 -0.5110 -0.3707 -0.2254
beta.chicks[2] -0.0030 0.0009 3.5630E-05 -0.0050 -0.0031 -0.0012
beta.chicks[3] -0.0776 0.0256 6.8580E-04 -0.1278 -0.0778 -0.0273
beta.chicks[4] -0.0036 0.0024 7.0490E-05 -0.0085 -0.0036 0.0010
sigma.chicks 0.4521 0.0523 1.0410E-03 0.3598 0.4484 0.5645
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Figure B-18. Model 3: Posterior densities of the parameter vector β.

R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]

R> chicks.post.l <- post.chicks$val2.5pc
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R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dw)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]

R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)

+ for(i in 1:length(x)){

+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))

R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),

+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,max.dw=max.dw)

R> resids <- resids[!is.na(resids$resid.raw),]

R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

Table B-12. Model 3: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.0567 -0.0932 0.0639
beta.chicks[2] 0.0567 1.0000 0.0732 0.3721
beta.chicks[3] -0.0932 0.0732 1.0000 0.0179
beta.chicks[4] 0.0639 0.3721 0.0179 1.0000
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Figure B-19. Model 3: Posterior predictive performance against chick
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R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-20. Model 3: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> binnedplot((resids$max.dw+mean.max.dw),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max 60-d WL rise (cm)",

+ ylab="Raw residuals")
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Figure B-21. Model 3: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)

R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])

R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)

R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)

R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-13. Model 3: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.7982
Skewness of chick counts 0.9708
Maximum chicks/pair 0.9126

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta-chicks-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),
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+ q_95=as.numeric(beta2.cs[8]),

+ q_975=as.numeric(beta2.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> Pr_beta2 <- round(sum((beta2.chains<0)/length(beta2.chains)),digits=4)

R> Pbeta2 <- data.frame(Value=Pr_beta2)

R> rm("beta2.chains","Pr_beta2")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(β2 < 0). The effect of the water-level covariate on nesting

Table B-14. Model 3: Pr(beta2 < 0)

Value

0.9987

success is given by exp (β1z1,ij).

R> zz <- seq(from=ceiling(min(max.dw)),to=floor(max(max.dw)),length.out=50) + mean.max.dw

R> wl.tmp <- exp(zz%o%as.numeric(beta2.q))

R> wl.effect <- data.frame(wl.var=zz,

+ wl.mean=wl.tmp[,1],

+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],

+ wl.q975=wl.tmp[,10])

R> write.csv(wl.effect,file=paste(predir,"mod",Model,"_wl.effect.csv",sep=""))

R> wl.effect.plot <- with(wl.effect,

+ xyplot(wl.mean + wl.q05 + wl.q95 + wl.q10 + wl.q90 ~

+ zz, type=rep("l",5), lty=c(1,2,2,4,4),

+ distribute.type=TRUE, col=c(rep("black",5)),

+ xlab="Max(water-level rise) (cm)",

+ ylab="Nesting success multiplier"))

R> wl.effect.plot <- wl.effect.plot + layer(panel.abline(h=1,lty=3))
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Figure B-22. Model 3: Estimated effect of the peak daily rate of water-
level increase on nesting success of loons. The solid line is the mean
response and the outer and inner sets of dashed lines enclose Bayesian
credible sets having 0.80 and 0.90 posterior probability.
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Model 4: Maximum 60-day water-level rise and t-distributed
random effects

Description

Model 4 uses the estimated maximal increase in water level over the putative
60-day nesting season as the water-level predictor covariate. A vague long-
tailed Student-t distribution is assumed for the latent random effect of lakes
on nesting success.

Let z1,ij denote the estimated maxima of water-level increase during the
60-day nesting season (variable est_delta_wl in loon-comb.csv) on lake i
during year j, let z2,j denote the (zero-centered) regional bald eagle abun-
dance index during year j, and let z3,ij denote the (zero-centered) day of the
year of ice breakup. Counts of nesting pairs were not made by the MLMP
so those counts, Xij , must be estimated from counts of adult loons, denoted
Wij . The first model assumes normal distributions for the lake-specific latent
random-effects parameters εj and β1,j and is given by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp (β1,j + β2z1,ij + β3z2,j + β4z3,ij)

β1,j ∼ t (β1, τβ1 , 3)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where τX = 1/σ2X and τβ1 = 1/σ2β1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σ2X and σ2β1 ,
respectively.

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> Model <- 4 ## Model number

R> ##modseed <- as.numeric(Sys.time())

R> modseed <- 2736736

R> set.seed(modseed)
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R> datafile <- paste(bugsdir, "inputs/mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dw=max.dw, tau.max.dw=tau.max.dw,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx, doyio=doy_io,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dw.cut[i] +

+ beta.chicks[3]*eagleindx[i] + beta.chicks[4]*doyio[i]

+ )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]
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+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dw[i] ~ dnorm(mu.max.dw[i],tau.max.dw[i])

+ mu.max.dw.cut[i] <- cut(mu.max.dw[i])

+ mu.max.dw[i]~dnorm(0,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dt(beta.chicks[1],tau.chicks,3)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-23).

Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> samplesSet(c("theta.pairs", "sigma.pairs",

+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "mu.max.dw","cpp"))

R> dicSet()

R> modelUpdate(nsamps)

R> dicTmp <- dicStats()
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Figure B-23. Model 4: BGR plot of parameter vector beta. The
chains have likely converged when the ratio of among-chain to within-
chain variances (red line) equals one.
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R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod <- rbind(dicMod,dicTmp)

R> rm(dicTmp)

Table B-15. Model 4: Summary of the joint posterior distribution of the parameters

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3555 0.0121 8.1120E-04 0.3261 0.3565 0.3741
theta.pairs[2] -0.0004 0.0001 3.9170E-06 -0.0005 -0.0004 -0.0002
sigma.pairs 1.0070 0.1654 6.6700E-03 0.7204 0.9928 1.3600
beta.chicks[1] -0.3638 0.0751 2.6020E-03 -0.5096 -0.3633 -0.2181
beta.chicks[2] -0.0027 0.0009 3.5720E-05 -0.0043 -0.0028 -0.0009
beta.chicks[3] -0.0783 0.0253 6.8250E-04 -0.1283 -0.0783 -0.0283
beta.chicks[4] -0.0032 0.0024 7.3180E-05 -0.0079 -0.0032 0.0017
sigma.chicks 0.3946 0.0492 1.0050E-03 0.3097 0.3907 0.5024
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Figure B-24. Model 4: Posterior densities of the parameter vector β.

R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]

R> chicks.post.l <- post.chicks$val2.5pc
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R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dw)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]

R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)

+ for(i in 1:length(x)){

+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))

R> samplesCoda("mu.max.dw",stem=paste(MCMCout,"mu-max-dw-",sep=""))

R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),

+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,max.dw=max.dw)

R> resids <- resids[!is.na(resids$resid.raw),]

R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

Table B-16. Model 4: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.0826 -0.0778 0.0429
beta.chicks[2] 0.0826 1.0000 0.0747 0.3721
beta.chicks[3] -0.0778 0.0747 1.0000 0.0431
beta.chicks[4] 0.0429 0.3721 0.0431 1.0000
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Figure B-25. Model 4: Posterior predictive performance against chick
counts that were withheld from model fitting (solid symbols). Vertical
bars denote Pr = 0.95 posterior-predictive credible sets for chick counts.

Appendix B-54



R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-26. Model 4: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> binnedplot((resids$max.dw+mean.max.dw),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max 60-d WL rise (cm)",

+ ylab="Raw residuals")
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Figure B-27. Model 4: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)

R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])

R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)

R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)

R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-17. Model 4: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.8258
Skewness of chick counts 0.982
Maximum chicks/pair 0.554

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta-chicks-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),
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+ q_95=as.numeric(beta2.cs[8]),

+ q_975=as.numeric(beta2.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> Pr_beta2 <- round(sum((beta2.chains<0)/length(beta2.chains)),digits=4)

R> Pbeta2 <- data.frame(Value=Pr_beta2)

R> rm("beta2.chains","Pr_beta2")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(β2 < 0). The effect of the water-level covariate on nesting

Table B-18. Model 4: Pr(beta2 < 0)

Value

0.9989

success is given by exp (β1z1,ij).

R> zz <- seq(from=ceiling(min(max.dw)),to=floor(max(max.dw)),length.out=50)+mean.max.dw

R> wl.tmp <- exp(zz%o%as.numeric(beta2.q))

R> wl.effect <- data.frame(wl.var=zz,

+ wl.mean=wl.tmp[,1],

+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],

+ wl.q975=wl.tmp[,10])

R> write.csv(wl.effect,file=paste(predir,"mod",Model,"_wl.effect.csv",sep=""))

R> wl.effect.plot <- with(wl.effect,

+ xyplot(wl.mean + wl.q05 + wl.q95 + wl.q10 + wl.q90 ~

+ zz, type=rep("l",5), lty=c(1,2,2,4,4),

+ distribute.type=TRUE, col=c(rep("black",5)),

+ xlab="Max(water-level rise) (cm)",

+ ylab="Nesting success multiplier"))

R> wl.effect.plot <- wl.effect.plot + layer(panel.abline(h=1,lty=3))
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Figure B-28. Model 4: Estimated effect of the peak daily rate of water-
level increase on nesting success of loons. The solid line is the mean
response and the outer and inner sets of dashed lines enclose Bayesian
credible sets having 0.80 and 0.90 posterior probability.
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Model 5: Maximum daily water-level rise, maximum 60-day
rise, and Student-t distributed random effects

Description

Model 5 uses the estimated maxima of the daily rates of water-level increase
and the maximum rise over the putative 60-day nesting season as water-level
predictor covariates. A vague, flat-tailed Student t distribution is assumed
for the latent random effect of lakes on nesting success.

Let z1,ij denote the estimated maxima of daily rates of water-level in-
crease during the 60-day nesting season (variable est_max_dwl_ddoy in
loon-comb.csv) on lake i during year j, let z2,j denote the (zero-centered)
regional bald eagle abundance index during year j, and let z3,ij denote the
(zero-centered) day of the year of ice breakup. Counts of nesting pairs were
not made by the MLMP so those counts, Xij , must be estimated from counts
of adult loons, denoted Wij . The first model assumes normal distributions
for the lake-specific latent random-effects parameters εj and β1,j and is given
by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp (β1,j + β2z1,ij + β3z2,j + β4z3,ij)

β1,j ∼ t (β1, τβ1 , 3)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where τX = 1/σ2X and τβ1 = 1/σ2β1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σ2X and σ2β1 ,
respectively.

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> modno <- 5 ## Model number

R> ##modseed <- as.numeric(Sys.time())

R> modseed <- 2736736
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R> set.seed(modseed)

R> datafile <- paste(bugsdir, "inputs/mod",modno,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",modno,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",modno,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",modno,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",modno,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",modno,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0),0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(62,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dwdt=max.dwdt, tau.max.dwdt=tau.max.dwdt,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx,

+ max.dw=max.dw, tau.max.dw=tau.max.dw,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dwdt.cut[i] +

+ beta.chicks[3]*eagleindx[i] +
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+ beta.chicks[4]*mu.max.dw.cut[i]

+ )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]

+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dwdt[i] ~ dnorm(mu.max.dwdt[i],tau.max.dwdt[i])

+ max.dw[i] ~ dnorm(mu.max.dw[i],tau.max.dw[i])

+ mu.max.dwdt.cut[i] <- cut(mu.max.dwdt[i])

+ mu.max.dw.cut[i] <- cut(mu.max.dw[i])

+ mu.max.dwdt[i]~dnorm(3,0.001)

+ mu.max.dw[i]~dnorm(0,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dt(beta.chicks[1],tau.chicks,3)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-29).

Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> samplesSet(c("theta.pairs", "sigma.pairs",
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Figure B-29. Model 5: BGR plot of parameter vector beta. The
chains have likely converged when the ratio of among-chain to within-
chain variances (red line) equals one.
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+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "cpp"))

R> dicSet()

R> modelUpdate(nsamps)

R> dicTmp <- dicStats()

R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod <- rbind(dicMod,dicTmp)

R> rm(dicTmp)

Table B-19. Model 5: Summary of the joint posterior distribution of the parameters
from Model 1.

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3437 0.0097 6.5270E-04 0.3269 0.3426 0.3627
theta.pairs[2] -0.0004 0.0001 3.5540E-06 -0.0005 -0.0003 -0.0002
sigma.pairs 1.0780 0.1721 6.5430E-03 0.7753 1.0660 1.4500
beta.chicks[1] -0.3480 0.0759 2.5800E-03 -0.4964 -0.3467 -0.2002
beta.chicks[2] -0.0137 0.0087 2.1110E-04 -0.0313 -0.0135 0.0028
beta.chicks[3] -0.0746 0.0265 7.8330E-04 -0.1274 -0.0745 -0.0246
beta.chicks[4] -0.0017 0.0010 3.7930E-05 -0.0037 -0.0017 0.0002
sigma.chicks 0.3973 0.0494 9.7240E-04 0.3113 0.3937 0.5064

Table B-20. Model 5: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.0308 -0.0976 0.0867
beta.chicks[2] 0.0308 1.0000 -0.0105 -0.3450
beta.chicks[3] -0.0976 -0.0105 1.0000 0.0912
beta.chicks[4] 0.0867 -0.3450 0.0912 1.0000

R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]

R> chicks.post.l <- post.chicks$val2.5pc

R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dwdt)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]

R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)

+ for(i in 1:length(x)){
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Figure B-30. Posterior densities of the parameter vector β.
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+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))
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Figure B-31. Model 5: Posterior predictive performance against chick
counts that were withheld from model fitting (solid symbols). Vertical
bars denote Pr = 0.95 posterior-predictive credible sets for chick counts.

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))

R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),
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+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,max.dw=max.dw,max.dwdt=max.dwdt)

R> resids <- resids[!is.na(resids$resid.raw),]

R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-32. Model 5: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.

R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)

R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])
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R> binnedplot((resids$max.dw+mean.max.dw),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max 60-d WL rise (cm)",

+ ylab="Raw residuals")
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Figure B-33. Model 5: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> binnedplot((resids$max.dwdt+mean.max.dwdt),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max daily rise (cm/day)",

+ ylab="Raw residuals")
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Figure B-34. Model 5: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)

R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)

R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-21. Model 5: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.8268
Skewness of chick counts 0.9692
Maximum chicks/pair 0.536

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> beta4.mean <- samplesStats("beta.chicks[4]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta2-chicks-",sep=""))

R> samplesCoda("beta.chicks[4]", stem=paste(MCMCout,"beta4-chicks-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta2-chicks-",sep=""), quiet=TRUE)

R> beta4.chains <- read.openbugs(stem=paste(MCMCout,"beta4-chicks-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta4.cs <- quantile(as.vector(as.array(beta4.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),

+ q_95=as.numeric(beta2.cs[8]),
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+ q_975=as.numeric(beta2.cs[9]))

R> beta4.q <- data.frame(mean=as.numeric(beta4.mean),

+ q_025=as.numeric(beta4.cs[1]),

+ q_05=as.numeric(beta4.cs[2]),

+ q_10=as.numeric(beta4.cs[3]),

+ q_25=as.numeric(beta4.cs[4]),

+ q_50=as.numeric(beta4.cs[5]),

+ q_75=as.numeric(beta4.cs[6]),

+ q_90=as.numeric(beta4.cs[7]),

+ q_95=as.numeric(beta4.cs[8]),

+ q_975=as.numeric(beta4.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> beta4.chains <- unlist(beta4.chains)

R> Pr_beta <- c(round(sum((beta2.chains<0)/length(beta2.chains)),digits=4),

+ round(sum((beta4.chains<0)/length(beta4.chains)),digits=4))

R> Pbeta <- data.frame(beta=c(1,4),Value=Pr_beta)

R> rm("beta2.chains","beta4.chains","Pr_beta")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(βk < 0), k ∈ {1, 5}.

Table B-22. Model 5: Pr(beta < 0)

beta Value

1 0.9461
4 0.9646

The linear effect of the water-level covariate on nesting success is given
by exp (β1z1,ij).

R> v1 <- seq(from=ceiling(min(max.dwdt)),to=floor(max(max.dwdt)),length.out=20)

R> v2 <- seq(from=ceiling(min(max.dw)),to=floor(max(max.dw)),length.out=20)

R> zz <- expand.grid(v1,v2)

R> wl.tmp <- exp(zz$Var1%o%as.numeric(beta2.q) + zz$Var2%o%as.numeric(beta4.q))

R> wl.effect <- data.frame(max.dwdt=zz$Var1,

+ max.dw=zz$Var2,

+ wl.mean=wl.tmp[,1],

+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],

+ wl.q975=wl.tmp[,10])
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R> write.csv(wl.effect,file=paste(predir,"mod",modno,"_wl.effect.csv",sep=""))

R> wl.effect.plot.mean <- levelplot(wl.mean ~ max.dwdt + max.dw, data=wl.effect,

+ cuts=100,pretty=TRUE,col.regions=terrain.colors)

R> wl.effect.plot.l <- levelplot(wl.q05 ~ max.dwdt + max.dw, data=wl.effect,

+ cuts=100,pretty=TRUE,col.regions=terrain.colors)

R> wl.effect.plot.u <- levelplot(wl.q95 ~ max.dwdt + max.dw, data=wl.effect,

+ cuts=100,pretty=TRUE,col.regions=terrain.colors)
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Figure B-35. Model 5: Estimated effects of the peak daily rate of
water-level increase and peak 60-day increase on expected nesting suc-
cess of loons.
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Figure B-36. Model 5: Estimated effects of the peak daily rate of
water-level increase and peak 60-day increase on lower bound of Pr=0.90
credible set.
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Figure B-37. Model 5: Estimated effects of the peak daily rate of
water-level increase and peak 60-day increase on upper bound of Pr=0.90
credible set.
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Model 6: Quadratic maximum 60-day water-level rise and
normally distributed random effects

Description

Model 6 uses the estimated maximal increase in water level over the putative
60-day nesting season as the water-level predictor covariate. A vague nor-
mal distribution is assumed for the latent random effect of lakes on nesting
success.

Let z1,ij denote the estimated maxima of water-level increase during the
60-day nesting season (variable est_delta_wl in loon-comb.csv) on lake i
during year j, let z2,j denote the (zero-centered) regional bald eagle abun-
dance index during year j. Counts of nesting pairs were not made by the
MLMP so those counts, Xij , must be estimated from counts of adult loons,
denoted Wij . The first model assumes normal distributions for the lake-
specific latent random-effects parameters εj and β1,j and is given by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp

(
β1,j + β2z1,ij + β3z2,j + β4z

2
1,ij

100

)
β1,j ∼ N (β1, τβ1)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where τX = 1/σ2X and τβ1 = 1/σ2β1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σ2X and σ2β1 ,
respectively. The exponential function on the right-hand side of the equation
for λY,ij is rescaled by the denominator of 100 for numerical convenience.

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> Model <- 6 ## Model number

R> ##modseed <- as.numeric(Sys.time())

R> modseed <- 2736736
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R> set.seed(modseed)

R> datafile <- paste(bugsdir, "inputs/mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dw=max.dw, tau.max.dw=tau.max.dw,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dw.cut[i] +

+ beta.chicks[3]*eagleindx[i] +

+ beta.chicks[4]*mu.max.dw.cut[i]*mu.max.dw.cut[i]/100 )
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+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]

+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dw[i] ~ dnorm(mu.max.dw[i],tau.max.dw[i])

+ mu.max.dw.cut[i] <- cut(mu.max.dw[i])

+ mu.max.dw[i]~dnorm(0,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dnorm(beta.chicks[1],tau.chicks)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-38).

Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> samplesSet(c("theta.pairs", "sigma.pairs",

+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "cpp"))

R> dicSet()

R> modelUpdate(nsamps)
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Figure B-38. Model 6: BGR plot of parameter vector beta. The
chains have likely converged when the ratio of among-chain to within-
chain variances (red line) equals one.
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R> dicTmp <- dicStats()

R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod <- rbind(dicMod,dicTmp)

R> rm(dicTmp)

Table B-23. Model 6: Summary of the joint posterior distribution of the parameters.

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3554 0.0117 7.8960E-04 0.3322 0.3544 0.3766
theta.pairs[2] -0.0004 0.0001 4.1630E-06 -0.0005 -0.0004 -0.0003
sigma.pairs 1.0020 0.1609 6.1950E-03 0.7181 0.9911 1.3460
beta.chicks[1] -0.3294 0.0717 2.2570E-03 -0.4668 -0.3293 -0.1870
beta.chicks[2] -0.0016 0.0009 3.3240E-05 -0.0034 -0.0016 0.0000
beta.chicks[3] -0.0718 0.0248 6.0950E-04 -0.1202 -0.0714 -0.0226
beta.chicks[4] -0.0056 0.0016 6.1490E-05 -0.0090 -0.0056 -0.0024
sigma.chicks 0.4408 0.0500 1.0490E-03 0.3532 0.4373 0.5494
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Figure B-39. Model 6: Posterior densities of the parameter vector β.

R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]
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R> chicks.post.l <- post.chicks$val2.5pc

R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dw)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]

R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)

+ for(i in 1:length(x)){

+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))

R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),

+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resid.std <- resid.raw/sd(resid.raw,na.rm=TRUE)

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,

+ resid.std=resid.std,max.dw=max.dw)

R> resids <- resids[!is.na(resids$resid.raw),]

Table B-24. Model 6: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.0484 -0.0502 -0.2215
beta.chicks[2] 0.0484 1.0000 0.1145 -0.1889
beta.chicks[3] -0.0502 0.1145 1.0000 -0.0327
beta.chicks[4] -0.2215 -0.1889 -0.0327 1.0000
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R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-41. Model 6: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.

R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)

R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])

R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)
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R> binnedplot(resids$max.dw,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max 60-d WL rise (cm)",

+ ylab="Raw residuals")
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Figure B-42. Model 6: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)

R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-25. Model 6: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.8254
Skewness of chick counts 0.982
Maximum chicks/pair 0.9574

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> beta4.mean <- samplesStats("beta.chicks[4]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta-chicks2-",sep=""))

R> samplesCoda("beta.chicks[4]", stem=paste(MCMCout,"beta-chicks4-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks2-",sep=""), quiet=TRUE)

R> beta4.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks4-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta4.cs <- quantile(as.vector(as.array(beta4.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),

+ q_95=as.numeric(beta2.cs[8]),

+ q_975=as.numeric(beta2.cs[9]))

R> beta4.q <- data.frame(mean=as.numeric(beta4.mean),

+ q_025=as.numeric(beta4.cs[1]),

+ q_05=as.numeric(beta4.cs[2]),

+ q_10=as.numeric(beta4.cs[3]),
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+ q_25=as.numeric(beta4.cs[4]),

+ q_50=as.numeric(beta4.cs[5]),

+ q_75=as.numeric(beta4.cs[6]),

+ q_90=as.numeric(beta4.cs[7]),

+ q_95=as.numeric(beta4.cs[8]),

+ q_975=as.numeric(beta4.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> beta4.chains <- unlist(beta4.chains)

R> Pr_beta <- c(round(sum((beta2.chains<0)/length(beta2.chains)),digits=4),

+ round(sum((beta4.chains<0)/length(beta4.chains)),digits=4))

R> Pbeta <- data.frame(beta=c(1,4),Value=Pr_beta)

R> rm("beta2.chains","beta4.chains","Pr_beta")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(β2 < 0). The effect of the water-level covariate on nesting

Table B-26. Model 6: Pr(beta < 0)

beta Value

1 0.9717
4 0.9999

success is given by exp (β1z1,ij).

R> zz <- seq(from=ceiling(min(max.dw)),to=floor(max(max.dw)),length.out=50) + mean.max.dw

R> wl.tmp <- exp(zz%o%as.numeric(beta2.q) + (zz*zz/100)%o%as.numeric(beta4.q))

R> wl.effect <- data.frame(wl.var=zz,

+ wl.mean=wl.tmp[,1],

+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],

+ wl.q975=wl.tmp[,10])

R> write.csv(wl.effect,file=paste(predir,"mod",Model,"_wl.effect.csv",sep=""))

R> wl.effect.plot <- with(wl.effect,

+ xyplot(wl.mean + wl.q05 + wl.q95 + wl.q10 + wl.q90 ~

+ zz, type=rep("l",5), lty=c(1,2,2,4,4),

+ distribute.type=TRUE, col=c(rep("black",5)),

+ xlab="Max(water-level rise) (cm)",

+ ylab="Nesting success multiplier"))

R> wl.effect.plot <- wl.effect.plot + layer(panel.abline(h=1,lty=3))
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Model 7: Quadratic maximum 45-day water-level rise and
Student’s t- distributed random effects

Description

Model 7 uses the estimated maximal increase in water level over the putative
45-day nesting season as the water-level predictor covariate. A vague long-
tailed Student’s t is assumed for the latent random effect of lakes on nesting
success. Model 7 informs the possibility of a quadratic effect in the maxima
of 45-day water-level rises; a similar model based on 60-day nesting seasons
failed. Note: This model uses a subset of the data used by Models
1–6 and is therefore not comparable with those models.

Let z1,ij denote the estimated maxima of water-level increase during the
45-day nesting season (variable est_delta_wl in loon-comb.csv) on lake i
during year j, let z2,j denote the (zero-centered) regional bald eagle abun-
dance index during year j. Counts of nesting pairs were not made by the
MLMP so those counts, Xij , must be estimated from counts of adult loons,
denoted Wij . The first model assumes normal distributions for the lake-
specific latent random-effects parameters εj and β1,j and is given by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp

(
β1,j + β2z1,ij + β3z2,j + β4z

2
1,ij

100

)
β1,j ∼ t (β1, τβ1 , 3)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where τX = 1/σ2X and τβ1 = 1/σ2β1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σ2X and σ2β1 ,
respectively. The exponential function on the right-hand side of the equation
for λY,ij is rescaled by the denominator of 100 for numerical convenience.

The Data

Get the data corresponding to 45-day putative nesting windows.

R> loondata2 <- read.csv(paste(datdir, "loon_comb.csv", sep=""))

R> loondata2 <- loondata2[(!loondata2$adults == 0 & loondata2$ret2 == 1),]
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R> loondata2 <- loondata2[, c("lkcode","lake","year","source","adults",

+ "pairs","chicks","hectares","date",

+ "doy_io","n_wlobs45","est_max_dwl_ddoy45",

+ "est_delta_wl45","est_delta_wl45",

+ "v_est_w_diffwl45","v_est_max_dwl_ddoy45",

+ "ret2","holdout")]

R> ## Omit records having implausible chick and/or pair counts:

R> ## -------------------------------------------------------------------

R> ## 9 chicks and 1 pair were reported from Birch Lake (Todd Co.)

R> ## during 2002. That is impossible and the data are omitted.

R> loondata2 <- loondata2[!(loondata2$lkcode==770084 & loondata2$year==2002),]

R> ## 14 chicks and 3 pairs were reported from Kabekona L. (Hubbard Co.)

R> ## during 1997. 4.6 chicks/pair is implausible, and data omitted.

R> loondata2 <- loondata2[!(loondata2$lkcode==290075 & loondata2$year==1997),]

R> ## 4 chicks from 1 pair was reported from Cross L. (Crow Wing Co.)

R> ## during 1980. That ratio has not been reported elsewhere, and

R> ## the next highest ratio is 3:1, which is known to be possible, but

R> ## rare. The 1980 Cross Lake record is omitted.

R> loondata2 <- loondata2[!(loondata2$lkcode==180312 & loondata2$year==1980),]

R> ## -------------------------------------------------------------------

R> loondata2 <- merge(loondata2, eagledata, by.x="year", by.y="year")

R> loondata2 <- loondata2[order(loondata2$source, loondata2$lkcode, loondata2$year),]

R> ## Hold out selected data from model fitting to enable out-of-sample

R> ## predictive evaluation by setting chicks <- NA.

R> chicks.temp <- rep(0,nrow(loondata2))

R> chicks.holdouts <- rep(0,nrow(loondata2))

R> loondata2$chicks.all <- loondata2$chicks

R> loondata2$pairs.all <- loondata2$pairs

R> for(i in 1:nrow(loondata2)){

+ if(loondata2$holdout[i]==1){

+ chicks.holdouts[i] <- loondata2$chicks[i]

+ chicks.temp[i] <- NA}

+ else{ chicks.holdouts[i] <- NA

+ chicks.temp[i] <- loondata2$chicks[i]}

+ }

R> loondata2$chicks <- chicks.temp

R> loondata2$chicks.holdouts <- chicks.holdouts

R> rm("chicks.temp")

R> year <- loondata2$year

R> yr <- as.factor(year-1978)

R> lake <- as.factor(loondata2$lake)

R> lkcode <- as.factor(loondata2$lkcode)

R> lkno <- charmatch(lkcode, unique(lkcode))

R> adults <- loondata2$adults

R> pairs <- loondata2$pairs

R> chicks <- loondata2$chicks
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R> ix <- (!is.na(loondata2$pairs.all)) & loondata2$pairs.all>0

R> cpp.obs <- loondata2$chicks.all[ix]/loondata2$pairs.all[ix]

R> max.cpp.obs <- max(cpp.obs,na.rm=TRUE)

R> eagleindx <- (loondata2$eaglenests -

+ mean(loondata2$eaglenests))/sd(loondata2$eaglenests)

R> survey <- as.factor(loondata2$source)

R> mean.doy.io <- round(mean(loondata2$doy_io))

R> doy_io <- loondata2$doy_io - mean.doy.io

R> max.dwdt <- loondata2$est_max_dwl_ddoy45

R> mean.max.dwdt <- mean(max.dwdt)

R> max.dwdt <- max.dwdt - mean.max.dwdt

R> v.max.dwdt <- loondata2$v_est_max_dwl_ddoy45

R> v.max.dwdt[v.max.dwdt==0] <- 0.001

R> tau.max.dwdt <- 1/v.max.dwdt

R> max.dw <- loondata2$est_delta_wl45

R> mean.max.dw <- mean(max.dw)

R> max.dw <- max.dw - mean.max.dw

R> v.max.dw <- loondata2$v_est_w_diffwl45

R> v.max.dw[v.max.dw==0] <- 0.0001

R> tau.max.dw <- 1/v.max.dw

R> N <- length(adults)

R> nlakes <- max(lkno)

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> Model <- 7 ## Model number

R> ##modseed <- as.numeric(Sys.time())

R> modseed <- 2736736

R> set.seed(modseed)

R> datafile <- paste(bugsdir, "inputs/mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,
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+ max.dw=max.dw, tau.max.dw=tau.max.dw,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dw.cut[i] +

+ beta.chicks[3]*eagleindx[i] +

+ beta.chicks[4]*mu.max.dw.cut[i]*mu.max.dw.cut[i]/100 )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]

+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dw[i] ~ dnorm(mu.max.dw[i],tau.max.dw[i])

+ mu.max.dw.cut[i] <- cut(mu.max.dw[i])

+ mu.max.dw[i]~dnorm(0,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dt(beta.chicks[1],tau.chicks,3)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

Appendix B-90



+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics
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Figure B-44. Model 7: BGR plot of parameter vector beta. The
chains have likely converged when the ratio of among-chain to within-
chain variances (red line) equals one.

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-44).
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Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> samplesSet(c("theta.pairs", "sigma.pairs",

+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "cpp"))

R> dicSet()

R> modelUpdate(nsamps)

R> dicTmp <- dicStats()

R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod2 <- rbind(dicMod2,dicTmp)

R> rm(dicTmp)

Table B-27. Model 7: Summary of the joint posterior distribution of the parameters.

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3522 0.0141 9.4620E-04 0.3240 0.3523 0.3808
theta.pairs[2] -0.0004 0.0001 4.7010E-06 -0.0005 -0.0004 -0.0002
sigma.pairs 1.0270 0.1733 7.5180E-03 0.7302 1.0130 1.4100
beta.chicks[1] -0.3341 0.0758 2.7970E-03 -0.4824 -0.3346 -0.1834
beta.chicks[2] -0.0027 0.0011 4.1850E-05 -0.0050 -0.0027 -0.0005
beta.chicks[3] -0.0755 0.0255 7.4960E-04 -0.1271 -0.0748 -0.0253
beta.chicks[4] -0.0081 0.0022 7.5740E-05 -0.0129 -0.0081 -0.0040
sigma.chicks 0.3945 0.0495 9.8920E-04 0.3081 0.3909 0.5014

Table B-28. Model 7: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.1203 -0.0373 -0.1624
beta.chicks[2] 0.1203 1.0000 -0.0076 -0.2236
beta.chicks[3] -0.0373 -0.0076 1.0000 -0.0073
beta.chicks[4] -0.1624 -0.2236 -0.0073 1.0000

R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]

R> chicks.post.l <- post.chicks$val2.5pc

R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dw)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]
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Figure B-45. Model 7: Posterior densities of the parameter vector β.
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R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)

+ for(i in 1:length(x)){

+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))

R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),

+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resid.std <- resid.raw/sd(resid.raw,na.rm=TRUE)

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,

+ resid.std=resid.std,max.dw=max.dw)

R> resids <- resids[!is.na(resids$resid.raw),]

R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)

R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])

R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata2$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)
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R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-47. Model 7: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> binnedplot(resids$max.dw,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max 60-d WL rise (cm)",

+ ylab="Raw residuals")
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Figure B-48. Model 7: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)

R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-29. Model 7: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.7118
Skewness of chick counts 0.949
Maximum chicks/pair 0.5332

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> beta4.mean <- samplesStats("beta.chicks[4]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta-chicks2-",sep=""))

R> samplesCoda("beta.chicks[4]", stem=paste(MCMCout,"beta-chicks4-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks2-",sep=""), quiet=TRUE)

R> beta4.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks4-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta4.cs <- quantile(as.vector(as.array(beta4.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),

+ q_95=as.numeric(beta2.cs[8]),

+ q_975=as.numeric(beta2.cs[9]))

R> beta4.q <- data.frame(mean=as.numeric(beta4.mean),

+ q_025=as.numeric(beta4.cs[1]),

+ q_05=as.numeric(beta4.cs[2]),

+ q_10=as.numeric(beta4.cs[3]),
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+ q_25=as.numeric(beta4.cs[4]),

+ q_50=as.numeric(beta4.cs[5]),

+ q_75=as.numeric(beta4.cs[6]),

+ q_90=as.numeric(beta4.cs[7]),

+ q_95=as.numeric(beta4.cs[8]),

+ q_975=as.numeric(beta4.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> beta4.chains <- unlist(beta4.chains)

R> Pr_beta <- c(round(sum((beta2.chains<0)/length(beta2.chains)),digits=4),

+ round(sum((beta4.chains<0)/length(beta4.chains)),digits=4))

R> Pbeta <- data.frame(beta=c(1,4),Value=Pr_beta)

R> rm("beta2.chains","beta4.chains","Pr_beta")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(β2 < 0). The effect of the water-level covariate on nesting

Table B-30. Model 7: Pr(beta < 0)

beta Value

1 0.9887
4 0.9999

success is given by exp (β1z1,ij).

R> zz <- seq(from=ceiling(min(max.dw)),to=floor(max(max.dw)),length.out=50) + mean.max.dw

R> wl.tmp <- exp(zz%o%as.numeric(beta2.q) + (zz*zz/100)%o%as.numeric(beta4.q))

R> wl.effect <- data.frame(wl.var=zz,

+ wl.mean=wl.tmp[,1],

+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],

+ wl.q975=wl.tmp[,10])

R> write.csv(wl.effect,file=paste(predir,"mod",Model,"_wl.effect.csv",sep=""))

R> wl.effect.plot <- with(wl.effect,

+ xyplot(wl.mean + wl.q05 + wl.q95 + wl.q10 + wl.q90 ~

+ zz, type=rep("l",5), lty=c(1,2,2,4,4),

+ distribute.type=TRUE, col=c(rep("black",5)),

+ xlab="Max(water-level rise) (cm)",

+ ylab="Nesting success multiplier"))

R> wl.effect.plot <- wl.effect.plot + layer(panel.abline(h=1,lty=3))
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Model 8: Maximum daily water-level rise, maximum 45-day
rise, and normally distributed random effects

Description

Model 8 uses the estimated maxima of the daily rates of water-level increase
and the maximum rise over the putative 45-day nesting season as water-level
predictor covariates. A vague normal distribution is assumed for the latent
random effect of lakes on nesting success. Model 8 is identical to Model 5,
apart from the data used to fit it. Note: This model uses a subset of
the data used by Models 1–6 and is therefore not comparable with
those models.

Let z1,ij denote the estimated maxima of daily rates of water-level in-
crease during the 45-day nesting season (variable est_max_dwl_ddoy in
loon-comb.csv) on lake i during year j, let z2,j denote the (zero-centered)
regional bald eagle abundance index during year j, and let z3,ij denote the
(zero-centered) day of the year of ice breakup. Counts of nesting pairs were
not made by the MLMP so those counts, Xij , must be estimated from counts
of adult loons, denoted Wij . The first model assumes normal distributions
for the lake-specific latent random-effects parameters εj and β1,j and is given
by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp (β1,j + β2z1,ij + β3z2,j + β4z3,ij)

β1,j ∼ N (β1, τβ1)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where τX = 1/σ2X and τβ1 = 1/σ2β1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σ2X and σ2β1 ,
respectively.

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations
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R> Model <- 8 ## Model number

R> ##modseed <- as.numeric(Sys.time())

R> modseed <- 2736736

R> set.seed(modseed)

R> datafile <- paste(bugsdir, "inputs/mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0),0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dwdt=max.dwdt, tau.max.dwdt=tau.max.dwdt,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx,

+ max.dw=max.dw, tau.max.dw=tau.max.dw,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])
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+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dwdt.cut[i] +

+ beta.chicks[3]*eagleindx[i] +

+ beta.chicks[4]*mu.max.dw.cut[i]

+ )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]

+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dwdt[i] ~ dnorm(mu.max.dwdt[i],tau.max.dwdt[i])

+ max.dw[i] ~ dnorm(mu.max.dw[i],tau.max.dw[i])

+ mu.max.dwdt.cut[i] <- cut(mu.max.dwdt[i])

+ mu.max.dw.cut[i] <- cut(mu.max.dw[i])

+ mu.max.dwdt[i]~dnorm(3,0.001)

+ mu.max.dw[i]~dnorm(0,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dt(beta.chicks[1],tau.chicks,3)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-50).

Results

Draw 5,000 additional samples to obtain the following results:
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Figure B-50. Model 8: BGR plot of parameter vector beta. The
chains have likely converged when the ratio of among-chain to within-
chain variances (red line) equals one.
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R> samplesClear("beta.chicks")

R> samplesSet(c("theta.pairs", "sigma.pairs",

+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "cpp"))

R> dicSet()

R> modelUpdate(nsamps)

R> dicTmp <- dicStats()

R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod2 <- rbind(dicMod2,dicTmp)

R> rm(dicTmp)

Table B-31. Model 8: Summary of the joint posterior distribution of the parameters

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3469 0.0129 8.6770E-04 0.3118 0.3492 0.3675
theta.pairs[2] -0.0004 0.0001 4.8480E-06 -0.0005 -0.0004 -0.0002
sigma.pairs 1.0520 0.1886 8.5770E-03 0.7403 1.0320 1.4800
beta.chicks[1] -0.3801 0.0762 2.4760E-03 -0.5305 -0.3796 -0.2340
beta.chicks[2] -0.0307 0.0113 2.7070E-04 -0.0530 -0.0307 -0.0091
beta.chicks[3] -0.0724 0.0260 7.1710E-04 -0.1228 -0.0717 -0.0229
beta.chicks[4] -0.0028 0.0012 5.0490E-05 -0.0051 -0.0029 -0.0004
sigma.chicks 0.3986 0.0507 1.0570E-03 0.3086 0.3948 0.5100

Table B-32. Model 8: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.0466 -0.1234 0.0547
beta.chicks[2] 0.0466 1.0000 -0.0412 -0.2908
beta.chicks[3] -0.1234 -0.0412 1.0000 0.0221
beta.chicks[4] 0.0547 -0.2908 0.0221 1.0000

R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]

R> chicks.post.l <- post.chicks$val2.5pc

R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dwdt)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]

R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)
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Figure B-51. Posterior densities of the parameter vector β.
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+ for(i in 1:length(x)){

+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))
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Figure B-52. Model 8: Posterior predictive performance against chick
counts that were withheld from model fitting (solid symbols). Vertical
bars denote Pr = 0.95 posterior-predictive credible sets for chick counts.

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))
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R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),

+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,max.dw=max.dw,max.dwdt=max.dwdt)

R> resids <- resids[!is.na(resids$resid.raw),]

R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-53. Model 8: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.

R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)
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R> binnedplot((resids$max.dw+mean.max.dw),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max 45-d WL rise (cm)",

+ ylab="Raw residuals")
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Figure B-54. Model 8: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> binnedplot((resids$max.dwdt+mean.max.dwdt),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max daily rise (cm/day)",

+ ylab="Raw residuals")
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Figure B-55. Model 8: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])

R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)

R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)

R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-33. Model 8: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.657
Skewness of chick counts 0.8866
Maximum chicks/pair 0.6142

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> beta4.mean <- samplesStats("beta.chicks[4]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta2-chicks-",sep=""))

R> samplesCoda("beta.chicks[4]", stem=paste(MCMCout,"beta4-chicks-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta2-chicks-",sep=""), quiet=TRUE)

R> beta4.chains <- read.openbugs(stem=paste(MCMCout,"beta4-chicks-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta4.cs <- quantile(as.vector(as.array(beta4.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),
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+ q_95=as.numeric(beta2.cs[8]),

+ q_975=as.numeric(beta2.cs[9]))

R> beta4.q <- data.frame(mean=as.numeric(beta4.mean),

+ q_025=as.numeric(beta4.cs[1]),

+ q_05=as.numeric(beta4.cs[2]),

+ q_10=as.numeric(beta4.cs[3]),

+ q_25=as.numeric(beta4.cs[4]),

+ q_50=as.numeric(beta4.cs[5]),

+ q_75=as.numeric(beta4.cs[6]),

+ q_90=as.numeric(beta4.cs[7]),

+ q_95=as.numeric(beta4.cs[8]),

+ q_975=as.numeric(beta4.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> beta4.chains <- unlist(beta4.chains)

R> Pr_beta <- c(round(sum((beta2.chains<0)/length(beta2.chains)),digits=4),

+ round(sum((beta4.chains<0)/length(beta4.chains)),digits=4))

R> Pbeta <- data.frame(beta=c(1,5),Value=Pr_beta)

R> rm("beta2.chains","beta4.chains","Pr_beta")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(βk < 0), k ∈ {1, 5}.

Table B-34. Model 8: Pr(beta < 0)

beta Value

1 0.9982
5 0.9847

The effect of the water-level covariate on nesting success is given by
exp (β1z1,ij).

R> v1 <- seq(from=ceiling(min(max.dwdt)),to=floor(max(max.dwdt)),length.out=20) + mean.max.dwdt

R> v2 <- seq(from=ceiling(min(max.dw)),to=floor(max(max.dw)),length.out=20) + mean.max.dw

R> zz <- expand.grid(v1,v2)

R> wl.tmp <- exp(zz$Var1%o%as.numeric(beta2.q) + zz$Var2%o%as.numeric(beta5.q))

R> wl.effect <- data.frame(max.dwdt=zz$Var1,

+ max.dw=zz$Var2,

+ wl.mean=wl.tmp[,1],

+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],
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+ wl.q975=wl.tmp[,10])

R> write.csv(wl.effect,file=paste(predir,"mod",Model,"_wl.effect.csv",sep=""))

R> wl.effect.plot.mean <- levelplot(wl.mean ~ max.dwdt + max.dw, data=wl.effect,

+ cuts=100,pretty=TRUE,col.regions=terrain.colors)

R> wl.effect.plot.l <- levelplot(wl.q05 ~ max.dwdt + max.dw, data=wl.effect,

+ cuts=100,pretty=TRUE,col.regions=terrain.colors)

R> wl.effect.plot.u <- levelplot(wl.q95 ~ max.dwdt + max.dw, data=wl.effect,

+ cuts=100,pretty=TRUE,col.regions=terrain.colors)
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Figure B-56. Model 8: Estimated effects of the peak daily rate of
water-level increase and peak 45-day increase on expected nesting suc-
cess of loons.
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Figure B-57. Model 8: Estimated effects of the peak daily rate of
water-level increase and peak 45-day increase on lower bound of Pr=0.90
credible set.
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Figure B-58. Model 8: Estimated effects of the peak daily rate of
water-level increase and peak 45-day increase on upper bound of Pr=0.90
credible set.
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Model 9: Maximum 45-day water-level rise and t-distributed
random effects

Description

Model 9 uses the estimated maximal increase in water level over the putative
45-day nesting season as the water-level predictor covariate. A vague long-
tailed Student-t distribution is assumed for the latent random effect of lakes
on nesting success. Model 9 is identical to Model 4, apart from use of 45-
day water-level estimates. Note: This model uses a subset of the data
used by Models 1–6 and is therefore not comparable with those
models.

Let z1,ij denote the estimated maxima of water-level increase during the
45-day nesting season (variable est_delta_wl in loon-comb.csv) on lake i
during year j, let z2,j denote the (zero-centered) regional bald eagle abun-
dance index during year j, and let z3,ij denote the (zero-centered) day of the
year of ice breakup. Counts of nesting pairs were not made by the MLMP
so those counts, Xij , must be estimated from counts of adult loons, denoted
Wij . The first model assumes normal distributions for the lake-specific latent
random-effects parameters εj and β1,j and is given by

Xij ∼ Poisson (λX,ij)

λX,ij = θ1Wij + θ2Wij
2 + εj

εj ∼ N (0, τX)

τX ∼ Gamma (3, 1.6)

(θ1, θ2) ∼ N (0,ΩX)

ΩX ∼ Wishart
(
2 diag2×2(2), 2

)
Yij ∼ Poisson (λY,ij)

λY,ij = λX,ij exp (β1,j + β2z1,ij + β3z2,j + β4z3,ij)

β1,j ∼ t (β1, τβ1 , 3)

τβ1 ∼ Gamma (3, 1)

(β1, β2, β3, β4) ∼ N (0,ΩY )

ΩY ∼ Wishart
(
4 diag4×4(3), 4

)
,

where σX = 1/
√
τX and σβ1 = 1/τβ1 . The Gamma priors on τX and τβ1 are

equivalent to vague but proper inverse (reciprocal) priors on σX and σβ1 ,
respectively.

Initialization

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> Model <- 9 ## Model number

R> ##modseed <- as.numeric(Sys.time())
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R> modseed <- 2736736

R> set.seed(modseed)

R> datafile <- paste(bugsdir, "inputs/mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dw=max.dw, tau.max.dw=tau.max.dw,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx, doyio=doy_io,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],

+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dw.cut[i] +

+ beta.chicks[3]*eagleindx[i] + beta.chicks[4]*doyio[i]
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+ )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]

+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dw[i] ~ dnorm(mu.max.dw[i],tau.max.dw[i])

+ mu.max.dw.cut[i] <- cut(mu.max.dw[i])

+ mu.max.dw[i]~dnorm(0,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dt(beta.chicks[1],tau.chicks,3)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)

R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. B-59).

Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> samplesSet(c("theta.pairs", "sigma.pairs",

+ "beta.chicks", "sigma.chicks",

+ "lambda.chicks","post.chicks",

+ "mu.max.dw","cpp"))

R> dicSet()
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Figure B-59. Model 9: BGR plot of parameter vector beta. The
chains have likely converged when the ratio of among-chain to within-
chain variances (red line) equals one.
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R> modelUpdate(nsamps)

R> dicTmp <- dicStats()

R> dicTmp <- dicTmp[c(1,3),]

R> dicTmp <- data.frame(rbind(dicTmp,apply(dicTmp,2,sum)),row.names=NULL)

R> dicTmp <- (cbind(Model,dicNode,dicTmp))

R> dicMod2 <- rbind(dicMod2,dicTmp)

R> rm(dicTmp)

Table B-35. Model 9: Summary of the joint posterior distribution of the parameters

mean sd MC error val2.5pc median val97.5pc

theta.pairs[1] 0.3527 0.0146 9.8810E-04 0.3209 0.3539 0.3772
theta.pairs[2] -0.0004 0.0001 4.6430E-06 -0.0006 -0.0004 -0.0003
sigma.pairs 1.0320 0.1860 8.5420E-03 0.7216 1.0130 1.4410
beta.chicks[1] -0.3787 0.0750 2.5010E-03 -0.5263 -0.3778 -0.2337
beta.chicks[2] -0.0044 0.0011 4.2800E-05 -0.0066 -0.0044 -0.0022
beta.chicks[3] -0.0763 0.0258 7.2800E-04 -0.1264 -0.0760 -0.0274
beta.chicks[4] -0.0038 0.0025 6.7690E-05 -0.0087 -0.0038 0.0011
sigma.chicks 0.3965 0.0503 1.0210E-03 0.3101 0.3921 0.5062
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Figure B-60. Model 9: Posterior densities of the parameter vector β.

R> ## Out-of-sample posterior predictive assessment

R> post.chicks <- samplesStats("post.chicks")[,1:6]
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R> chicks.post.l <- post.chicks$val2.5pc

R> chicks.post.u <- post.chicks$val97.5pc

R> post.chicks <- data.frame(survey,lake,lkcode,year,chicks.post.l,

+ chicks.holdouts,chicks.post.u,max.dw)

R> o <- order(post.chicks$survey,post.chicks$chicks.holdouts,post.chicks$lake)

R> post.chicks <- post.chicks[o,]

R> post.chicks <- post.chicks[!is.na(post.chicks$chicks.holdouts),]

R> write.csv(post.chicks,file=paste(predir,"post.chicks-m",Model,".csv",sep=""))

R> panel.bar <- function(x,y,dyu=NULL,dyl=NULL,...){

+ panel.xyplot(x,y,...)

+ for(i in 1:length(x)){

+ panel.segments(x[i],dyl[i],x[i],dyu[i])

+ }

+ }

R> key.groups <- list(space="bottom",columns=3,text=list(levels(post.chicks$survey)),

+ points=list(pch=c(15,17,16)),col="black")

R> holdout.plot <- xyplot(post.chicks$chicks.holdouts~1:dim(post.chicks)[1],

+ groups=post.chicks$survey,

+ key=key.groups,

+ panel=panel.bar,

+ dyu=post.chicks$chicks.post.u,

+ dyl=post.chicks$chicks.post.l,

+ cex=1.0,col="black",fill=T,

+ ylim=c(-1,(1+max(post.chicks$chicks.post.u))),

+ pch=c(15,17,16),ylab="Chick counts",xlab="",

+ scales = list(x = list(draw = FALSE)))

R> ## Plot binned residuals

R> samplesCoda("lambda.chicks",stem=paste(MCMCout,"lambda-chicks-",sep=""))

R> samplesCoda("mu.max.dw",stem=paste(MCMCout,"mu-max-dw-",sep=""))

R> lambda.chicks <- read.openbugs(stem=paste(MCMCout,"lambda-chicks-",sep=""),

+ quiet=TRUE)

R> pred.chicks <- as.vector(lambda.chicks[[1]][nsamps,])

R> resid.raw <- chicks - pred.chicks

R> resids <- data.frame(pred.chicks=pred.chicks,resid.raw=resid.raw,max.dw=max.dw)

R> resids <- resids[!is.na(resids$resid.raw),]

R> o <- order(resids$pred.chicks,resids$resid.raw)

R> resids <- resids[o,]

Table B-36. Model 9: Correlation matrix for the posterior distribution of key parameters.

beta.chicks.1. beta.chicks.2. beta.chicks.3. beta.chicks.4.

beta.chicks[1] 1.0000 0.0822 -0.0835 0.0009
beta.chicks[2] 0.0822 1.0000 0.0131 0.2978
beta.chicks[3] -0.0835 0.0131 1.0000 0.0213
beta.chicks[4] 0.0009 0.2978 0.0213 1.0000
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Figure B-61. Model 9: Posterior predictive performance against chick
counts that were withheld from model fitting (solid symbols). Vertical
bars denote Pr = 0.95 posterior-predictive credible sets for chick counts.
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R> binnedplot(resids$pred.chicks,resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Predicted chick counts",

+ ylab="Raw residuals")
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Figure B-62. Model 9: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.

R> ## Bayesian P-values for max(chicks)

R> samplesCoda("cpp",stem=paste(MCMCout,"post-cpp-",sep=""))

R> samplesCoda("post.chicks",stem=paste(MCMCout,"post-chicks-",sep=""))

R> post.chicks.chains <- read.openbugs(stem=paste(MCMCout,"post-chicks-",sep=""),

+ quiet=TRUE)

R> post.chicks.mat <- as.matrix(post.chicks.chains[,][1])

R> post.chicks.max <- apply(post.chicks.mat,1,max)

R> max.chicks <- max(na.omit(chicks))

R> Pval.max <- mean(max.chicks >= post.chicks.max)

R> skew.chicks <- skewness(loondata$chicks.all, na.rm=TRUE)

R> post.chicks.skew <- apply(post.chicks.mat,1,skewness)

R> Pval.skew <- mean(skew.chicks >= post.chicks.skew)

R> post.cpp.chains <- read.openbugs(stem=paste(MCMCout,"post-cpp-",sep=""),

+ quiet=TRUE)
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R> binnedplot((resids$max.dw+mean.max.dw),resids$resid.raw,

+ nclass=3*floor(sqrt(length(resids$pred.chicks))),

+ main=NULL,

+ xlab="Max 45-d WL rise (cm)",

+ ylab="Raw residuals")
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Figure B-63. Model 9: Plot of binned residuals from the final MCMC
iteration. Grey lines enclose ±2 standard errors.
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R> post.cpp.mat <- as.matrix(post.cpp.chains[,][1])

R> post.cpp.max <- apply(post.cpp.mat,1,max)

R> Pval.max.cpp <- mean(max.cpp.obs >= post.cpp.max)

R> pvals <- data.frame(cbind(Statistic=c("Maximum chick count","Skewness of chick counts",

+ "Maximum chicks/pair"),

+ P_value=c(Pval.max,Pval.skew,Pval.max.cpp)),

+ row.names=NULL)

Table B-37. Model 9: Bayesian P-values for posterior assessment of model performance
against selected statistics.

Statistic P value

Maximum chick count 0.7156
Skewness of chick counts 0.9102
Maximum chicks/pair 0.5372

R> ## Pr(beta[2] < 0)

R> beta2.mean <- samplesStats("beta.chicks[2]")["mean"]

R> samplesCoda("beta.chicks[2]", stem=paste(MCMCout,"beta-chicks-",sep=""))

R> beta2.chains <- read.openbugs(stem=paste(MCMCout,"beta-chicks-",sep=""), quiet=TRUE)

R> beta2.cs <- quantile(as.vector(as.array(beta2.chains)),

+ probs=c(0.025,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.975))

R> beta2.q <- data.frame(mean=as.numeric(beta2.mean),

+ q_025=as.numeric(beta2.cs[1]),

+ q_05=as.numeric(beta2.cs[2]),

+ q_10=as.numeric(beta2.cs[3]),

+ q_25=as.numeric(beta2.cs[4]),

+ q_50=as.numeric(beta2.cs[5]),

+ q_75=as.numeric(beta2.cs[6]),

+ q_90=as.numeric(beta2.cs[7]),

+ q_95=as.numeric(beta2.cs[8]),

+ q_975=as.numeric(beta2.cs[9]))

R> beta2.chains <- unlist(beta2.chains)

R> Pr_beta2 <- round(sum((beta2.chains<0)/length(beta2.chains)),digits=4)

R> Pbeta2 <- data.frame(Value=Pr_beta2)

R> rm("beta2.chains","Pr_beta2")

The marginal adverse effect of the water-level covariate on nesting success
is given by Pr(β2 < 0). The effect of the water-level covariate on nesting
success is given by exp (β1z1,ij).

R> zz <- seq(from=ceiling(min(max.dw)),to=floor(max(max.dw)),length.out=50)+mean.max.dw

R> wl.tmp <- exp(zz%o%as.numeric(beta2.q))

R> wl.effect <- data.frame(wl.var=zz,

+ wl.mean=wl.tmp[,1],
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+ wl.q025=wl.tmp[,2],

+ wl.q05=wl.tmp[,3],

+ wl.q10=wl.tmp[,4],

+ wl.q25=wl.tmp[,5],

+ wl.q50=wl.tmp[,6],

+ wl.q75=wl.tmp[,7],

+ wl.q90=wl.tmp[,8],

+ wl.q95=wl.tmp[,9],

+ wl.q975=wl.tmp[,10])

R> write.csv(wl.effect,file=paste(predir,"mod",Model,"_wl.effect.csv",sep=""))

R> wl.effect.plot <- with(wl.effect,

+ xyplot(wl.mean + wl.q05 + wl.q95 + wl.q10 + wl.q90 ~

+ zz, type=rep("l",5), lty=c(1,2,2,4,4),

+ distribute.type=TRUE, col=c(rep("black",5)),

+ xlab="Max(water-level rise) (cm)",

+ ylab="Nesting success multiplier"))

R> wl.effect.plot <- wl.effect.plot + layer(panel.abline(h=1,lty=3))

Table B-38. Model 9: Pr(beta2 < 0)

Value

1.0000
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Figure B-64. Model 9: Estimated effect of the peak daily rate of water-
level increase on nesting success of loons. The solid line is the mean
response and the outer and inner sets of dashed lines enclose Bayesian
credible sets having 0.80 and 0.90 posterior probability.
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Model Comparison

The Deviance Information Criterion (DIC; Spiegelhalter et al. (2002)) is
used to compare models. Models having small values of DIC have better
predictive capability than models having larger values. DIC values from
models based on presumptive 60-day nesting windows are not comparable
with DIC values from models based on presumptive 45-day nesting windows
because the data differ. Therefore DIC summaries are presented separately.

Models Based on Presumptive 60-day Nesting Seasons

Table B-39. Deviance Information Criterion (DIC) and associated statistics for compar-
ison among models based on 60-day nesting seasons. Dbar is the posterior mean deviance,
Dhat is the deviance measured at the posterior mean and pD is the number of effective
parameters in the models.

Model Node Dbar Dhat DIC pD

1 chicks 2533 2470 2597 63.24
1 pairs 1783 1756 1810 26.88
1 total 4316 4226 4407 90.12
2 chicks 2532 2467 2596 64.36
2 pairs 1780 1753 1808 27.44
2 total 4312 4220 4404 91.80
3 chicks 2534 2472 2596 61.95
3 pairs 1779 1752 1807 27.67
3 total 4313 4224 4403 89.62
4 chicks 2531 2468 2593 62.70
4 pairs 1781 1753 1808 27.14
4 total 4312 4221 4401 89.84
5 chicks 2528 2464 2592 64.01
5 pairs -410 -1125 306 715.90
5 total 2118 1339 2898 779.91
6 chicks 2526 2464 2587 61.46
6 pairs 1782 1755 1809 27.06
6 total 4308 4219 4396 88.52

Models Based on Presumptive 45-day Nesting Seasons
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Table B-40. Deviance Information Criterion (DIC) and associated statistics for compar-
ison among models based on 45-day nesting seasons. Dbar is the posterior mean deviance,
Dhat is the deviance measured at the posterior mean and pD is the number of effective
parameters in the models.

Model Node Dbar Dhat DIC pD

7 chicks 2462 2397 2526 64.22
7 pairs 1748 1720 1775 27.34
7 total 4210 4117 4301 91.56
8 chicks 2465 2400 2531 65.68
8 pairs -122 -822 577 699.20
8 total 2343 1578 3108 764.88
9 chicks 2473 2408 2537 64.31
9 pairs 1748 1720 1775 27.58
9 total 4221 4128 4312 91.89
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Appendix C
Evaluation of Effects of the 2000
Rule Curve on the Nesting Suc-
cess of Loons on Rainy Lake
and the Namakan Reservoir
This appendix is an image of the Reproducible Research Record for eval-
uation of the statistical properties of alternative estimators of water-level
extremes. This reproducible research record (Ince et al., 2012) was im-
plemented by the R noweb file loon-rulecurvepred.Rnw. Execution of that
file from R replicates the analysis and produces the LATEX source file from
which this appendix was generated. Thus, this appendix contains the printed
record of the analysis.

Objective

The objective of this analysis is to compare posterior predictions of common
loons Gavia immer on Rainy Lake and the Namakan Reservoir complex
under the 1970 and 2000 Rule Curves. This analysis uses Model 6.

The model does not include temporal dynamics of the Minnesota-Ontario
breeding population. Therefore the approach used here is to hold the counts
of adults and pairs fixed at the values observed during 2005. The results
are conditional predictions of differences in nesting success between the 2000
and 1970 Rule Curves, assuming a constant breeding population.

Implementation

This analysis used R version 2.15.0 (R Development Core Team, 2011).
Bayesian Markov Chain Monte Carlo sampling was implemented using the
R package BRugs version 0.7-7 (Thomas et al., 2006). Computations were
performed on umesc-250.er.usgs.gov running under Ubuntu Gnu Linux 10.04.
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Data Description

The 2005 counts of adult loons and loon pairs from the National Park Service
Voyageurs National Park (VOYA) are treated as a fixed basis for compari-
son, and are replicated over the years 1970 through 2010. The water-level
covariates are computed from the observed hydrographs for each of those
years. The system was operated under the 1970 Rule Curve from 1970–1999,
and under the 2000 Rule curve from 2000–2010. The data construction was
performed by the SAS program Loon_Data-6.sas.

These analyses re-computed Model 6 (retaining the original RNG seed)
with the addition of the replicated data, as described above. Because there
are no chick counts for those hypothetical data, they do not inform the
model fit. However, the MCMC sampling produces posterior predictions
of chick counts and the numbers of chicks per pair, which are the basis for
comparison of nesting success predicted under the 1970 and 2000 rule curves.

Data extraction

Extract the loon-count and water-level data from rulecurvepred.csv and
extract the Wisconsin bald eagle nest index from EagelNestSurvey.csv:

R> library(BRugs)

R> library(xtable)

R> library(moments)

R> library(latticeExtra)

R> library(arm)

R> setwd("/home/sgutreuter/projects/NRPP-Voya/R/loons")

R> old.par <- par

R> options(SweaveHooks = list(fig=function() par(mar=c(5.1,4.1,1.1,2.1))))

R> datdir <- paste((Sys.getenv("DATA")), "/projects/NRPP-Voya/Loons/", sep="")

R> bugsdir <- paste((Sys.getenv("HOME")),

+ "/projects/NRPP-Voya/R/loons/BUGS/", sep="")

R> ruledata <- read.csv(paste(datdir, "rulecurvepred.csv", sep=""))

R> eagledata <- read.csv(paste(datdir, "EagleNestSurvey.csv", sep=""))

R> loondata <- read.csv(paste(datdir, "loon_comb.csv", sep=""))

R> loondata <- loondata[(!loondata$adults == 0 & loondata$ret1 == 1),]

R> ## Omit records having implausible chick and/or pair counts:

R> ## -------------------------------------------------------------------

R> ## 9 chicks and 1 pair were reported from Birch Lake (Todd Co.)

R> ## during 2002. That is impossible and the data are omitted.

R> loondata <- loondata[!(loondata$lkcode==770084 & loondata$year==2002),]

R> ## 14 chicks and 3 pairs were reported from Kabekona L. (Hubbard Co.)

R> ## during 1997. 4.6 chicks/pair is implausible, and data omitted.

R> loondata <- loondata[!(loondata$lkcode==290075 & loondata$year==1997),]

R> ## 4 chicks from 1 pair was reported from Cross L. (Crow Wing Co.)

R> ## during 1980. That ratio has not been reported elsewhere, and

R> ## the next highest ratio is 3:1, which is known to be possible, but
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R> ## rare. The 1980 Cross Lake record is omitted.

R> loondata <- loondata[!(loondata$lkcode==180312 & loondata$year==1980),]

R> ## -------------------------------------------------------------------

R>

R> loondata <- merge(loondata, eagledata, by.x="year", by.y="year")

R> ## Hold out selected data from model fitting to enable out-of-sample

R> ## predictive evaluation by setting chicks <- NA.

R> chicks.temp <- rep(0,nrow(loondata))

R> chicks.holdouts <- rep(0,nrow(loondata))

R> loondata$chicks.all <- loondata$chicks

R> loondata$pairs.all <- loondata$pairs

R> for(i in 1:nrow(loondata)){

+ if(loondata$holdout[i]==1){

+ chicks.holdouts[i] <- loondata$chicks[i]

+ chicks.temp[i] <- NA}

+ else{ chicks.holdouts[i] <- NA

+ chicks.temp[i] <- loondata$chicks[i]}

+ }

R> loondata$chicks <- chicks.temp

R> loondata$chicks.holdouts <- chicks.holdouts

R> rm("chicks.temp")

R> year <- loondata$year

R> yr <- as.factor(year-1978)

R> lake <- as.factor(loondata$lake)

R> lkcode <- as.factor(loondata$lkcode)

R> lkno <- charmatch(lkcode, unique(lkcode))

R> adults <- loondata$adults

R> pairs <- loondata$pairs

R> chicks <- loondata$chicks

R> ix <- (!is.na(loondata$pairs.all)) & loondata$pairs.all>0

R> cpp.obs <- loondata$chicks.all[ix]/loondata$pairs.all[ix]

R> max.cpp.obs <- max(cpp.obs,na.rm=TRUE)

R> eagleindx <- (loondata$eaglenests -

+ mean(loondata$eaglenests))/sd(loondata$eaglenests)

R> survey <- as.factor(loondata$source)

R> mean.doy.io <- round(mean(loondata$doy_io))

R> doy_io <- loondata$doy_io - mean.doy.io

R> max.dwdt <- loondata$est_max_dwl_ddoy60

R> mean.max.dwdt <- mean(max.dwdt)

R> max.dwdt <- max.dwdt - mean.max.dwdt

R> v.max.dwdt <- loondata$v_est_max_dwl_ddoy60

R> v.max.dwdt[v.max.dwdt==0] <- 0.0001

R> tau.max.dwdt <- 1/v.max.dwdt

R> max.dw <- loondata$est_delta_wl60

R> mean.max.dw <- mean(max.dw)

R> max.dw <- max.dw - mean.max.dw
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R> v.max.dw <- loondata$v_est_w_diffwl60

R> v.max.dw[v.max.dw==0] <- 0.0001

R> tau.max.dw <- 1/v.max.dw

R> N0 <- length(adults)

R> nlakes <- max(lkno)

R> base.idx <- 1 + sum(as.numeric(is.na(chicks)))

R> ruledata$rcurve <- as.factor((ruledata$year < 2000)*1970 +

+ (ruledata$year >= 2000)*2000)

R> doy_io.1970 <- ruledata$doy_io[ruledata$rcurve == 1970]

R> doy_io.2000 <- ruledata$doy_io[ruledata$rcurve == 2000]

R> N.1970 <- length(ruledata$pairs[ruledata$rcurve == 1970])

R> N.2000 <- length(ruledata$pairs[ruledata$rcurve == 2000])

R> doy_io.1970 <- ruledata$doy_io[ruledata$rcurve == 1970] - mean.doy.io

R> doy_io.2000 <- ruledata$doy_io[ruledata$rcurve == 2000] - mean.doy.io

R> eagleindx.1970 <- rep(0, N.1970)

R> eagleindx.2000 <- rep(0, N.2000)

R> v.max.dwdt.1970 <- rep(0.0001, N.1970)

R> tau.max.dwdt.1970 <- 1/v.max.dwdt.1970

R> v.max.dw.1970 <- rep(0.0001, N.1970)

R> tau.max.dw.1970 <- 1/v.max.dw.1970

R> v.max.dwdt.2000 <- rep(0.0001, N.2000)

R> tau.max.dwdt.2000 <- 1/v.max.dwdt.2000

R> v.max.dw.2000 <- rep(0.0001, N.2000)

R> tau.max.dw.2000 <- 1/v.max.dw.2000

R> max.dwdt.1970 <- ruledata$est_max_dwl_ddoy60[ruledata$rcurve == 1970]

R> max.dwdt.2000 <- ruledata$est_max_dwl_ddoy60[ruledata$rcurve == 2000]

R> max.dw.1970 <- ruledata$est_delta_wl60[ruledata$rcurve == 1970]

R> max.dw.2000 <- ruledata$est_delta_wl60[ruledata$rcurve == 2000]

R> adults.1970 <- ruledata$adults[ruledata$rcurve == 1970]

R> adults.2000 <- ruledata$adults[ruledata$rcurve == 2000]

R> pairs.1970 <- ruledata$pairs[ruledata$rcurve == 1970]

R> pairs.2000 <- ruledata$pairs[ruledata$rcurve == 2000]

R> lkcode.1970 <- ruledata$lkcode[ruledata$rcurve == 1970]

R> lkcode.2000 <- ruledata$lkcode[ruledata$rcurve == 2000]

R> year.1970 <- ruledata$year[ruledata$rcurve == 1970]

R> year.2000 <- ruledata$year[ruledata$rcurve == 2000]

R> yr.1970 <- as.factor(year.1970 - 1978)

R> yr.2000 <- as.factor(year.2000 - 1978)

R> nlakes.rc <- 4

R> lkno.1970 <- c(rep(56,30),rep(57,30),rep(58,30),rep(59,30))

R> lkno.2000 <- c(rep(56,11),rep(57,11),rep(58,11),rep(59,11))

R> chicks.rc <- as.numeric(rep(NA,dim(ruledata)[1]))

R> predir <- paste(bugsdir,"preds/",sep="")

R> doy_io <- c(doy_io,doy_io.1970,doy_io.2000)

R> eagleindx <- c(eagleindx,eagleindx.1970,eagleindx.2000)

R> max.dwdt <- c(max.dwdt,max.dwdt.1970,max.dwdt.2000)
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R> tau.max.dwdt <- c(tau.max.dwdt,tau.max.dwdt.1970,tau.max.dwdt.2000)

R> max.dw <- c(max.dw,max.dw.1970,max.dw.2000)

R> tau.max.dw <- c(tau.max.dw,tau.max.dw.1970,tau.max.dw.2000)

R> adults <- c(adults,adults.1970,adults.2000)

R> pairs <- c(pairs,pairs.1970,pairs.2000)

R> chicks <- c(chicks,chicks.rc)

R> lkno <- c(lkno,lkno.1970,lkno.2000)

R> N <- N0 + N.1970 + N.2000

R>

Model 6: Quadratic maximum 60-day water-level
rise and lognormally distributed lake-specific ran-
dom effects.

Initialize the model:

R> burnin <- 6000 ## Number of burn-in iterations

R> nsamps <- 5000 ## Number of post-convergence iterations

R> Model <- 6 ## Model number

R> modseed <- 2736736

R> set.seed(modseed)

R> datafile <- paste(bugsdir, "inputs/rc-mod",Model,"-data.txt", sep="")

R> initfiles <- c(paste(bugsdir, "inputs/rc-mod",Model,"-init1.txt", sep=""),

+ paste(bugsdir, "inputs/rc-mod",Model,"-init2.txt", sep=""),

+ paste(bugsdir, "inputs/rc-mod",Model,"-init3.txt", sep=""))

R> modelfile <- paste(bugsdir, "inputs/rc-model-",Model,".bug", sep="")

R> MCMCout <- paste(bugsdir,"chains/rc-m",Model,"_",sep="")

R> zerovec <- rep(0,4)

R> nuR.chicks <- 3*diag(1, nrow=4)

R> nuR.pairs <- 2*diag(1, nrow=2)

R> parm0 <- cbind((0.33 + 0.1*rnorm(3,0)), (-0.0003+0.001*rnorm(3,0)),

+ (0.2*rnorm(3,0)-0.8), 0.001*rnorm(3,0), 0.1*rnorm(3,0),

+ 0.1*rnorm(3,0) )

R> re0 <- outer(0.1*rnorm(nlakes,0), parm0[,1], FUN="+")

R> bugsData(list(pairs=pairs, adults=adults, chicks=chicks,

+ max.dw=max.dw, tau.max.dw=tau.max.dw,

+ lkno=lkno, N=N, nlakes=nlakes,

+ eagleindx=eagleindx,

+ zerovec.chicks=zerovec, zerovec.pairs=zerovec[1:2],

+ nuR.chicks=nuR.chicks, nuR.pairs=nuR.pairs),

+ datafile, digits=5)

R> bugsInits(list(list(theta.pairs=parm0[1,1:2],

+ beta.chicks=parm0[1,3:6],

+ beta.chicks.j=re0[,1]),

+ list(theta.pairs=parm0[2,1:2],
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+ beta.chicks=parm0[2,3:6],

+ beta.chicks.j=re0[,3]),

+ list(theta.pairs=parm0[3,1:2],

+ beta.chicks=parm0[3,3:6],

+ beta.chicks.j=re0[,3])),

+ numChains = 3, initfiles, digits=5)

R> write("model{

+ for (i in 1:N){

+

+ ## Model for nesting pairs

+ pairs[i] ~ dpois(lambda.pairs[i])

+ lambda.pairs[i] <- max(0.0001, theta.pairs[1]*adults[i] +

+ theta.pairs[2]*adults[i]*adults[i] +

+ epsilon.pairs[lkno[i]])

+

+ ## Model for chicks

+ chicks[i] ~ dpois(lambda.chicks[i])

+ cpp[i] <- exp(beta.chicks.j[lkno[i]] +

+ beta.chicks[2]*mu.max.dw.cut[i] +

+ beta.chicks[3]*eagleindx[i] +

+ beta.chicks[4]*mu.max.dw.cut[i]*mu.max.dw.cut[i]/100 )

+ lambda.chicks[i] <- (max(0.0001,lambda.pairs[i]))*cpp[i]

+ post.chicks[i] ~ dpois(lambda.chicks[i])

+ max.dw[i] ~ dnorm(mu.max.dw[i],tau.max.dw[i])

+ mu.max.dw.cut[i] <- cut(mu.max.dw[i])

+ mu.max.dw[i]~dnorm(0,0.001)

+ }

+

+ for (j in 1:nlakes) {

+ epsilon.pairs[j] ~ dnorm(0,tau.pairs)

+ beta.chicks.j[j] ~ dnorm(beta.chicks[1],tau.chicks)

+ }

+

+ tau.pairs ~ dgamma(3,1.6)

+ sigma.pairs <- pow(tau.pairs,-0.5)

+ theta.pairs[1:2] ~ dmnorm(zerovec.pairs[],Omega.theta[,])

+ Omega.theta[1:2 , 1:2] ~ dwish(nuR.pairs[,],2)

+

+ tau.chicks ~ dgamma(3,1)

+ sigma.chicks <- pow(tau.chicks,-0.5)

+ beta.chicks[1:4] ~ dmnorm(zerovec.chicks[],Omega.beta[,])

+ Omega.beta[1:4, 1:4] ~ dwish(nuR.chicks[,],4)

+

+ }", modelfile)

R> modelCheck(modelfile)

R> modelData(datafile)
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R> modelCompile(numChains=3)

R> modelInits(initfiles)

R> modelGenInits()

R> samplesSet(c("beta.chicks"))

R> modelUpdate(burnin)

Convergence diagnostics
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Figure C-1. Model 6: BGR plot of parameter vector beta. The chains
have likely converged when the ratio of among-chain to within-chain
variances (red line) equals one.

Verify convergence using Brooks-Gelman-Rubin plots. The chains for β
clearly converged within the 10,000-iteration burn in (Fig. C-1).

Results

Draw 5,000 additional samples to obtain the following results:

R> samplesClear("beta.chicks")

R> samplesSet(c("beta.chicks", "chicks", "cpp"))

R> modelUpdate(nsamps)

Compute the differences of means (over years) between the 2000 and
1970 Rule Curves. The intermediate result is a set of nsamps × 3 differences
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from the MCMC output, which are used to compute posterior summaries.
The final results are the overall predicted mean differences between Rule
Curves from each lake and Pr = 0.90 and Pr = 0.95 Bayesian credible sets.

R> samplesCoda("chicks",stem=paste(MCMCout,"chicks-rc-",sep=""))

R> samplesCoda("cpp",stem=paste(MCMCout,"cpp-rc-",sep=""))

R> chicks.rc <- read.openbugs(stem=paste(MCMCout,"chicks-rc-",sep=""),

+ quiet=TRUE)

R> cpp.rc <- read.openbugs(stem=paste(MCMCout,"cpp-rc-",sep=""),

+ quiet=TRUE)

R> chicks.rc.array <- as.array(chicks.rc)

R> chicks.rc.array <- chicks.rc.array[,(base.idx:(base.idx+N.1970+N.2000-1)),]

R> chicks.sandpoint.1970 <- chicks.rc.array[,1:30,]

R> chicks.namakan.1970 <- chicks.rc.array[,31:60,]

R> chicks.rainy.1970 <- chicks.rc.array[,61:90,]

R> chicks.kabetogama.1970 <- chicks.rc.array[,91:120,]

R> chicks.sandpoint.2000 <- chicks.rc.array[,121:131,]

R> chicks.namakan.2000 <- chicks.rc.array[,132:142,]

R> chicks.rainy.2000 <- chicks.rc.array[,143:153,]

R> chicks.kabetogama.2000 <- chicks.rc.array[,154:164,]

R> q.chicks.sandpoint.1970 <- round(quantile(chicks.sandpoint.1970,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.chicks.namakan.1970 <- round(quantile(chicks.namakan.1970,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.chicks.rainy.1970 <- round(quantile(chicks.rainy.1970,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.chicks.kabetogama.1970 <- round(quantile(chicks.kabetogama.1970,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.chicks.sandpoint.2000 <- round(quantile(chicks.sandpoint.2000,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.chicks.namakan.2000 <- round(quantile(chicks.namakan.2000,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.chicks.rainy.2000 <- round(quantile(chicks.rainy.2000,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.chicks.kabetogama.2000 <- round(quantile(chicks.kabetogama.2000,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> mean.chicks.sandpoint.1970 <- as.vector(apply(chicks.sandpoint.1970,

+ c(1,3), mean))

Table C-1. Model 6: Summary of the joint posterior distribution of the parameters.

mean sd MC error val2.5pc median val97.5pc

beta.chicks[1] -0.4468 0.0709 1.9870E-03 -0.5869 -0.4490 -0.3029
beta.chicks[2] -0.0016 0.0009 3.6520E-05 -0.0033 -0.0015 0.0002
beta.chicks[3] -0.0771 0.0254 7.1620E-04 -0.1272 -0.0763 -0.0278
beta.chicks[4] -0.0053 0.0016 6.0920E-05 -0.0086 -0.0053 -0.0021
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R> mean.chicks.sandpoint.2000 <- as.vector(apply(chicks.sandpoint.2000,

+ c(1,3), mean))

R> mean.chicks.namakan.1970 <- as.vector(apply(chicks.namakan.1970,

+ c(1,3), mean))

R> mean.chicks.namakan.2000 <- as.vector(apply(chicks.namakan.2000,

+ c(1,3), mean))

R> mean.chicks.rainy.1970 <- as.vector(apply(chicks.rainy.1970,

+ c(1,3), mean))

R> mean.chicks.rainy.2000 <- as.vector(apply(chicks.rainy.2000,

+ c(1,3), mean))

R> mean.chicks.kabetogama.1970 <- as.vector(apply(chicks.kabetogama.1970,

+ c(1,3), mean))

R> mean.chicks.kabetogama.2000 <- as.vector(apply(chicks.kabetogama.2000,

+ c(1,3), mean))

R> gm.chicks.sandpoint.1970 <- mean(mean.chicks.sandpoint.1970)

R> gm.chicks.namakan.1970 <- mean(mean.chicks.namakan.1970)

R> gm.chicks.rainy.1970 <- mean(mean.chicks.rainy.1970)

R> gm.chicks.kabetogama.1970 <- mean(mean.chicks.kabetogama.1970)

R> gm.chicks.sandpoint.2000 <- mean(mean.chicks.sandpoint.2000)

R> gm.chicks.namakan.2000 <- mean(mean.chicks.namakan.2000)

R> gm.chicks.rainy.2000 <- mean(mean.chicks.rainy.2000)

R> gm.chicks.kabetogama.2000 <- mean(mean.chicks.kabetogama.2000)

R> mdif.chicks.sandpoint <- mean.chicks.sandpoint.2000 -

+ mean.chicks.sandpoint.1970

R> mdif.chicks.namakan <- mean.chicks.namakan.2000 -

+ mean.chicks.namakan.1970

R> mdif.chicks.rainy <- mean.chicks.rainy.2000 -

+ mean.chicks.rainy.1970

R> mdif.chicks.kabetogama <- mean.chicks.kabetogama.2000 -

+ mean.chicks.kabetogama.1970

R> cpp.rc.array <- as.array(cpp.rc)

R> cpp.rc.array <- cpp.rc.array[,((N0+1):(N0+N.1970+N.2000)),]

R> cpp.sandpoint.1970 <- cpp.rc.array[,1:30,]

R> cpp.namakan.1970 <- cpp.rc.array[,31:60,]

R> cpp.rainy.1970 <- cpp.rc.array[,61:90,]

R> cpp.kabetogama.1970 <- cpp.rc.array[,91:120,]

R> cpp.sandpoint.2000 <- cpp.rc.array[,121:131,]

R> cpp.namakan.2000 <- cpp.rc.array[,132:142,]

R> cpp.rainy.2000 <- cpp.rc.array[,143:153,]

R> cpp.kabetogama.2000 <- cpp.rc.array[,154:164,]

R> q.cpp.sandpoint.1970 <- round(quantile(cpp.sandpoint.1970,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.namakan.1970 <- round(quantile(cpp.namakan.1970,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.rainy.1970 <- round(quantile(cpp.rainy.1970,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)
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R> q.cpp.kabetogama.1970 <- round(quantile(cpp.kabetogama.1970,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.sandpoint.2000 <- round(quantile(cpp.sandpoint.2000,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.namakan.2000 <- round(quantile(cpp.namakan.2000,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.rainy.2000 <- round(quantile(cpp.rainy.2000,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.kabetogama.2000 <- round(quantile(cpp.kabetogama.2000,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> mean.cpp.sandpoint.1970 <- as.vector(apply(cpp.sandpoint.1970,

+ c(1,3), mean))

R> mean.cpp.sandpoint.2000 <- as.vector(apply(cpp.sandpoint.2000,

+ c(1,3), mean))

R> mean.cpp.namakan.1970 <- as.vector(apply(cpp.namakan.1970,

+ c(1,3), mean))

R> mean.cpp.namakan.2000 <- as.vector(apply(cpp.namakan.2000,

+ c(1,3), mean))

R> mean.cpp.rainy.1970 <- as.vector(apply(cpp.rainy.1970,

+ c(1,3), mean))

R> mean.cpp.rainy.2000 <- as.vector(apply(cpp.rainy.2000,

+ c(1,3), mean))

R> mean.cpp.kabetogama.1970 <- as.vector(apply(cpp.kabetogama.1970,

+ c(1,3), mean))

R> mean.cpp.kabetogama.2000 <- as.vector(apply(cpp.kabetogama.2000,

+ c(1,3), mean))

R> gm.cpp.sandpoint.1970 <- mean(mean.cpp.sandpoint.1970)

R> gm.cpp.namakan.1970 <- mean(mean.cpp.namakan.1970)

R> gm.cpp.rainy.1970 <- mean(mean.cpp.rainy.1970)

R> gm.cpp.kabetogama.1970 <- mean(mean.cpp.kabetogama.1970)

R> gm.cpp.sandpoint.2000 <- mean(mean.cpp.sandpoint.2000)

R> gm.cpp.namakan.2000 <- mean(mean.cpp.namakan.2000)

R> gm.cpp.rainy.2000 <- mean(mean.cpp.rainy.2000)

R> gm.cpp.kabetogama.2000 <- mean(mean.cpp.kabetogama.2000)

R> mdif.cpp.sandpoint <- mean.cpp.sandpoint.2000 -

+ mean.cpp.sandpoint.1970

R> mdif.cpp.namakan <- mean.cpp.namakan.2000 -

+ mean.cpp.namakan.1970

R> mdif.cpp.rainy <- mean.cpp.rainy.2000 - mean.cpp.rainy.1970

R> mdif.cpp.kabetogama <- mean.cpp.kabetogama.2000 -

+ mean.cpp.kabetogama.1970

R> q.cpp.sandpoint <- round(quantile(mdif.cpp.sandpoint,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.namakan <- round(quantile(mdif.cpp.namakan,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.rainy <- round(quantile(mdif.cpp.rainy,
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+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> q.cpp.kabetogama <- round(quantile(mdif.cpp.kabetogama,

+ probs=c(0.025,0.05,0.95,0.975)), digits=3)

R> m.cpp.sandpoint <- round(mean(mdif.cpp.sandpoint), digits=3)

R> m.cpp.namakan <- round(mean(mdif.cpp.namakan), digits=3)

R> m.cpp.rainy <- round(mean(mdif.cpp.rainy), digits=3)

R> m.cpp.kabetogama <- round(mean(mdif.cpp.kabetogama), digits=3)

R> p.cpp.sandpoint <- round((100*mean(mdif.cpp.sandpoint))/gm.cpp.sandpoint.1970,

+ digits=1)

R> p.cpp.namakan <- round((100*mean(mdif.cpp.namakan))/gm.cpp.namakan.1970,

+ digits=1)

R> p.cpp.rainy <- round((100*mean(mdif.cpp.rainy))/gm.cpp.rainy.1970,

+ digits=1)

R> p.cpp.kabetogama <- round((100*mean(mdif.cpp.kabetogama))/gm.cpp.kabetogama.1970,

+ digits=1)

R> table1 <- data.frame(pct.chg=c(p.cpp.rainy,p.cpp.namakan,p.cpp.kabetogama,p.cpp.sandpoint),

+ mean.cpp=c(m.cpp.rainy,m.cpp.namakan,m.cpp.kabetogama,m.cpp.sandpoint),

+ cs90=c(paste(q.cpp.rainy[2],"--",q.cpp.rainy[3],sep=""),

+ paste(q.cpp.namakan[2],"--",q.cpp.namakan[3],sep=""),

+ paste(q.cpp.kabetogama[2],"--",q.cpp.kabetogama[3],sep=""),

+ paste(q.cpp.sandpoint[2],"--",q.cpp.sandpoint[3],sep="")),

+ cs95=c(paste(q.cpp.rainy[1],"--",q.cpp.rainy[4],sep=""),

+ paste(q.cpp.namakan[1],"--",q.cpp.namakan[4],sep=""),

+ paste(q.cpp.kabetogama[1],"--",q.cpp.kabetogama[4],sep=""),

+ paste(q.cpp.sandpoint[1],"--",q.cpp.sandpoint[4],sep="")),

+ row.names=c("Rainy","Namakan","Kabetogama","Sand Point"))

R> table2 <- data.frame(lake=c("Rainy"," ","Kabetogama"," ","Namakan"," ","Sand Point"," "),

+ rc=c(1970,2000,1970,2000,1970,2000,1970,2000),

+ obscpp=c(0.43,0.27,0.16,0.22,0.36,0.20,0.26,0.34),

+ postmean=c(gm.cpp.rainy.1970,gm.cpp.rainy.2000,

+ gm.cpp.kabetogama.1970,gm.cpp.kabetogama.2000,

+ gm.cpp.namakan.1970,gm.cpp.namakan.2000,

+ gm.cpp.sandpoint.1970,gm.cpp.sandpoint.2000),

+ cs5=c(paste(q.cpp.rainy.1970[1],"--",q.cpp.rainy.1970[4],sep=""),

+ paste(q.cpp.rainy.2000[1],"--",q.cpp.rainy.2000[4],sep=""),

+ paste(q.cpp.kabetogama.1970[1],"--",q.cpp.kabetogama.1970[4],sep=""),

+ paste(q.cpp.kabetogama.2000[1],"--",q.cpp.kabetogama.2000[4],sep=""),

+ paste(q.cpp.namakan.1970[1],"--",q.cpp.namakan.1970[4],sep=""),

+ paste(q.cpp.namakan.2000[1],"--",q.cpp.namakan.2000[4],sep=""),

+ paste(q.cpp.sandpoint.1970[1],"--",q.cpp.sandpoint.1970[4],sep=""),

+ paste(q.cpp.sandpoint.2000[1],"--",q.cpp.sandpoint.2000[4],sep="")))

R> mdif.chicks.sandpoint <- mean.chicks.sandpoint.2000 -

+ mean.chicks.sandpoint.1970

R> mdif.chicks.namakan <- mean.chicks.namakan.2000 -

+ mean.chicks.namakan.1970

R> mdif.chicks.rainy <- mean.chicks.rainy.2000 - mean.chicks.rainy.1970
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R> mdif.chicks.kabetogama <- mean.chicks.kabetogama.2000 -

+ mean.chicks.kabetogama.1970

R> q.chicks.sandpoint <- round(quantile(mdif.chicks.sandpoint,

+ probs=c(0.025,0.05,0.95,0.975)), digits=1)

R> q.chicks.namakan <- round(quantile(mdif.chicks.namakan, probs=c(0.025,0.05,0.95,0.975)), digits=1)

R> q.chicks.rainy <- round(quantile(mdif.chicks.rainy,

+ probs=c(0.025,0.05,0.95,0.975)), digits=1)

R> q.chicks.kabetogama <- round(quantile(mdif.chicks.kabetogama,

+ probs=c(0.025,0.05,0.95,0.975)), digits=1)

R> m.chicks.sandpoint <- round(mean(mdif.chicks.sandpoint), digits=1)

R> m.chicks.namakan <- round(mean(mdif.chicks.namakan), digits=1)

R> m.chicks.rainy <- round(mean(mdif.chicks.rainy), digits=1)

R> m.chicks.kabetogama <- round(mean(mdif.chicks.kabetogama), digits=1)

R> table3 <- data.frame(mean.chicks=c(m.chicks.rainy,m.chicks.namakan,m.chicks.kabetogama,m.chicks.sandpoint),

+ cs90=c(paste(q.chicks.rainy[2],"--",q.chicks.rainy[3],sep=""),

+ paste(q.chicks.namakan[2],"--",q.chicks.namakan[3],sep=""),

+ paste(q.chicks.kabetogama[2],"--",q.chicks.kabetogama[3],sep=""),

+ paste(q.chicks.sandpoint[2],"--",q.chicks.sandpoint[3],sep="")),

+ cs95=c(paste(q.chicks.rainy[1],"--",q.chicks.rainy[4],sep=""),

+ paste(q.chicks.namakan[1],"--",q.chicks.namakan[4],sep=""),

+ paste(q.chicks.kabetogama[1],"--",q.chicks.kabetogama[4],sep=""),

+ paste(q.chicks.sandpoint[1],"--",q.chicks.sandpoint[4],sep="")),

+ row.names=c("Rainy","Namakan","Kabetogama","Sand Point"))

Table C-2. Model 6: Posterior predictions of differences between mean chicks per pair
under the 2000 and 1970 Rule Curves.

pct.chg mean.cpp cs90 cs95

Rainy -6.2 -0.030 -0.046—0.014 -0.05—0.011
Namakan 45.3 0.157 0.097–0.228 0.088–0.245
Kabetogama 45.4 0.119 0.078–0.163 0.071–0.174
Sand Point 45.4 0.078 0.05–0.111 0.045–0.119

Table C-3. Model 6: Observed mean chicks per pair and posterior predictions under the
2000 and 1970 Rule Curves.

lake rc obscpp postmean cs5

1 Rainy 1970.0000 0.43000 0.47877 0.296–0.694
2 2000.0000 0.27000 0.44919 0.139–0.692
3 Kabetogama 1970.0000 0.16000 0.26199 0.061–0.493
4 2000.0000 0.22000 0.38086 0.207–0.599
5 Namakan 1970.0000 0.36000 0.34611 0.078–0.685
6 2000.0000 0.20000 0.50284 0.255–0.838
7 Sand Point 1970.0000 0.26000 0.17164 0.04–0.329
8 2000.0000 0.34000 0.24955 0.13–0.403
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Table C-4. Model 6: Posterior predictions of differences between mean numbers of chicks
under the 2000 and 1970 Rule Curves.

mean.chicks cs90 cs95

Rainy -1.3 -4–1.3 -4.5–1.8
Namakan 4.2 1.7–7.1 1.3–7.7
Kabetogama 4.0 1.6–6.5 1.2–7.1
Sand Point 0.5 -0.2–1.3 -0.3–1.5
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