

Prepared by/for: Mississippi Valley Division St. Paul District

# Souris River Watershed Corps Water Management System Report



U.S. Army Corps of Engineers

September 2020

| Date       | Principal Author | Comments                                                                            |  |  |
|------------|------------------|-------------------------------------------------------------------------------------|--|--|
| 03/03/2020 | Emily Moe, MVP   | Initial Draft                                                                       |  |  |
| 09/21/2020 | Emily Moe, MVP   | Draft report sent to MMC Documentation Team                                         |  |  |
| 11/17/2020 | J. Darville, MMC | Initial Technical Review Complete. Report Sent to Team Lead for Comment Resolution. |  |  |
| 11/18/2020 | Emily Moe, MVP   | Draft Returned to MMC Documentation Team.                                           |  |  |
| 11/18/2020 | J. Darville, MMC | Final Review Complete. Report Finalized.                                            |  |  |
|            |                  |                                                                                     |  |  |
|            |                  |                                                                                     |  |  |
|            |                  |                                                                                     |  |  |

## CONTENTS

| Section | n 1–Overview                                                                                    | 1    |
|---------|-------------------------------------------------------------------------------------------------|------|
| Section | n 2–Basin Background                                                                            | 2    |
| 2.1     | Watershed and Channel System                                                                    | 2    |
| 2.2     | Water Management Projects                                                                       | 6    |
| 2.3     | Additional Water Management Projects                                                            | 7    |
| 2.4     | Flooding Risk within the SOURIS River Watershed                                                 | 7    |
| Section | n 3–Hydraulic Engineering Management Plan                                                       | 9    |
| 3.1     | Deployment Team and Tasks                                                                       | 9    |
| 3.2     | Status of District's Existing Models and Corps Water management System Deployment               | .10  |
| 3.3     | Corps Water Management System Deployment Goals                                                  | .10  |
| Section | n 4–Data Compilation                                                                            | .11  |
| 4.1     | Spatial Tools and Reference                                                                     | .11  |
| 4.2     | Digital Elevation Model                                                                         | .11  |
| 4.3     | Vector and Raster Data                                                                          | .11  |
| 4.4     | Aerial Images                                                                                   | .11  |
| 4.5     | Soil Data                                                                                       | .11  |
| 4.6     | Precipitation Data                                                                              | .12  |
| 4.7     | Streamflow and Reservoir Data                                                                   | . 15 |
| 4.8     | Sources of Additional Data                                                                      | . 17 |
| 4.9     | Reservoir Physical Data for Additional Non-USACE Projects                                       | . 18 |
| 4.10    | Relevant Existing Studies                                                                       | .19  |
| 4.11    | Software and Documentation                                                                      | . 19 |
| 4.12    | Unresolved Issues with Data and Data Feeds                                                      | .20  |
| Section | n 5–Summary of Method Development                                                               | .21  |
| 5.1     | Models Developed                                                                                | .21  |
| Section | n 6–Hydrologic Engineering Center-Hydrologic Modeling System Model Development                  | . 22 |
| 6.1     | Status of District's Existing Hydrologic Engineering Center-Hydrologic Modeling System Model(s) | . 22 |
| 6.2     | Watershed Delineation                                                                           | .22  |
| 6.      | 2.1 DEM Conditioning: 30-meter DEM                                                              | .22  |
| 6.      | 2.2 Basin Subdivision                                                                           | .22  |
| 6.3     | In-Stream Reservoirs and Diversions                                                             | .30  |
| 6.4     | Initial Basin Conditions                                                                        | .31  |
| 6.5     | Calibration Events                                                                              | .31  |

| 6.6 Rai | nfall and Snowmelt Events – Basin Model Calibration Parameters and Approach | 32 |
|---------|-----------------------------------------------------------------------------|----|
| 6.6.1   | Canopy Losses                                                               | 32 |
| 6.6.2   | Gridded Storage                                                             | 32 |
| 6.6.3   | Initial Deficit                                                             | 32 |
| 6.6.4   | Maximum Deficit                                                             | 32 |
| 6.6.5   | Constant Loss Rate                                                          | 33 |
| 6.6.6   | Evapotranspiration Rate                                                     | 33 |
| 6.6.7   | Percent Impervious                                                          | 33 |
| 6.6.8   | Time of Concentration                                                       | 33 |
| 6.6.9   | Storage Coefficient                                                         | 34 |
| 6.6.10  | Baseflow Parameters                                                         | 34 |
| 6.6.11  | Zoning                                                                      | 34 |
| 6.6.12  | Routing Reach Parameters                                                    | 34 |
| 6.7 Sno | wmelt Events – Meteorologic Model Calibration Parameters and Approach       |    |
| 6.7.1   | Temperature Grid                                                            |    |
| 6.7.2   | Precipitation Grid                                                          |    |
| 6.7.3   | Initial Snow Water Equivalent Grid                                          | 39 |
| 6.7.4   | Initial Cold Content Grid                                                   |    |
| 6.7.5   | Initial Liquid Grid                                                         | 39 |
| 6.7.6   | Initial Cold Content Antecedent Temperature Index Grid                      |    |
| 6.7.7   | Initial Melt Antecedent Temperature Index Grid                              | 40 |
| 6.7.8   | PX Temperature                                                              | 40 |
| 6.7.9   | Base Temperature                                                            | 40 |
| 6.7.10  | Wet Meltrate                                                                | 40 |
| 6.7.11  | Rain Rate Limit                                                             | 40 |
| 6.7.12  | Antecedent Temperature Index-Meltrate Coefficient                           | 40 |
| 6.7.13  | Antecedent Temperature Index Meltrate Function                              | 40 |
| 6.7.14  | Cold Limit                                                                  | 40 |
| 6.7.15  | Antecedent Temperature Index Coldrate Coefficient                           | 40 |
| 6.7.16  | Antecedent Temperature Index Coldrate Function                              | 40 |
| 6.7.17  | Water Capacity                                                              | 40 |
| 6.7.18  | Groundmelt                                                                  | 41 |
| 6.8 Rai | nfall Events - Calibration Results and Discussion                           | 41 |
| 6.8.1   | Rainfall Event Calibration Results Summary                                  | 41 |
| 6.9 Sno | wmelt Events - Meteorologic Model Calibration Results and Discussion        | 42 |

| 6.10    | Sno  | wmelt Events - Basin Model Calibration Results and Discussion                                | 47 |
|---------|------|----------------------------------------------------------------------------------------------|----|
| 6.11    | Rair | nfall Event - Final Basin Model Parameters                                                   | 47 |
| 6.1     | 1.1  | Evapotranspiration Rate Coefficient                                                          | 47 |
| 6.12    | Sno  | wmelt Event - Final Meteorologic Model Parameters                                            | 48 |
| 6.13    | Sno  | wmelt Event - Final Basin Model Parameters                                                   | 48 |
| 6.14    | Rair | nfall Event Verification                                                                     | 48 |
| 6.15    | Sno  | wmelt Event Meteorologic Model Verification                                                  | 49 |
| 6.16    | Sno  | wmelt Event Basin Model Verification                                                         | 51 |
| 6.17    | Fore | ecast Alternatives and Zones                                                                 | 51 |
| 6.18    | Unre | esolved Issues with the HEC-HMS Model                                                        | 52 |
| 6.1     | 8.1  | Percent Impervious Calibration                                                               | 52 |
| 6.1     | 8.2  | Antecedent Conditions vs. Constant Loss Trend Analysis                                       | 52 |
| 6.1     | 8.3  | Constant Loss Spatial Comparison                                                             | 53 |
| 6.1     | 8.4  | Existing Model Parameter Comparison                                                          | 54 |
| 6.1     | 8.5  | Cumulative Precipitation vs. Constant Loss Trend Analysis                                    | 54 |
| Section | 7–Hy | drologic Engineering Center-Reservoir System Simulation Model Development                    | 55 |
| 7.1     | Stat | us of District's Existing Hydrologic Engineering Center-Reservoir System Simulation Model    | 55 |
| 7.2     | Phy  | sical Reservoir Data                                                                         | 57 |
| 7.3     | Оре  | erating Rules                                                                                | 62 |
| 7.4     | Flov | v Data                                                                                       | 66 |
| 7.5     |      | Irologic Engineering Center-Reservoir System Simulation Model Testing and Verification Event |    |
| 7.5     | .1   | 2011 Event – Flood of Record (Spring melt and summer rain)                                   | 73 |
| 7.5     | .2   | 2013 Event – Spring Melt                                                                     | 76 |
| 7.5     | .3   | 2007 Event – Drought Event                                                                   | 79 |
| 7.5     | .4   | Extreme Event                                                                                | 82 |
| 7.6     | Rec  | commendations for Hydrologic engineering center-Reservoir system simulation Model Use        | 84 |
| 7.7     | Unre | esolved Issues with the Hydrologic Engineering Center-Reservoir System Simulation Model      | 84 |
| Section | 8–Hy | drologic Engineering Center-River Analysis System Model Development                          | 85 |
| 8.1     | Stat | us of District's Existing Hydrologic Engineering Center-River Analysis System Model(s)       | 85 |
| 8.2     | Bou  | Indary Conditions                                                                            | 86 |
| 8.3     | Мос  | del Parameters                                                                               | 89 |
| 8.3     | .1   | Coordinate System                                                                            | 89 |
| 8.3     | .2   | Vertical Datum                                                                               | 89 |
| 8.3     | .3   | Terrain                                                                                      | 89 |

| 8.3.    | 4     | Cross Sections                                                                    |
|---------|-------|-----------------------------------------------------------------------------------|
| 8.3.    | 5     | Manning's n Values                                                                |
| 8.3.    | 6     | Lateral Structures                                                                |
| 8.3.    | 7     | Bridges                                                                           |
| 8.3.    | 8     | Inline Structures                                                                 |
| 8.3.    | 9     | Ineffective Areas                                                                 |
| 8.3.    | 10    | HTab Parameters                                                                   |
| 8.4     | Мос   | lel Calibration92                                                                 |
| 8.5     | Cali  | bration Events and Results                                                        |
| 8.6     | Veri  | fication Events and Discussion                                                    |
| 8.7     | Rec   | ommendations for Hydraulic Engineering Center-River Analysis System Model Use     |
| 8.8     | Unre  | esolved Issues with Hydrologic Engineering Center-River Analysis System Model     |
| Section | 9–Hy  | drologic Engineering Center-Flood Impact Analysis Model Deployment                |
| 9.1     | Hyd   | rologic Engineering Center-Flood Impact Analysis Input Data                       |
| 9.2     | Hyd   | rologic Engineering Center-Flood Impact Analysis Structure Inventory              |
| 9.3     | Hyd   | rological Engineering Center-Flood Impact Analysis Model Calibration              |
| 9.4     | Criti | cal Infrastructure and Key Resources119                                           |
| 9.5     | Floc  | od Impact Response Tables                                                         |
| 9.6     | Hyd   | rologic Engineering Center Flood Impact Analysis Results                          |
| 9.7     | Rec   | ommendations for Hydrologic Engineering Center-Flood Impact Analysis Model Use    |
| 9.8     | Unre  | esolved Issues with the Hydrologic Engineering Center-Flood Impact Analysis Model |
| Section | 10–C  | orps Water Management System Control and Visualization Interface Development 124  |
| 10.1    | Мос   | lel Integration within the Control and Visualization Interface                    |
| 10.1    | 1.1   | Unique Components for this System                                                 |
| 10.1    | 1.2   | Program Sequence                                                                  |
| 10.2    | Time  | e Series Icons                                                                    |
| 10.3    | Мос   | lel Alternative Keys                                                              |
| 10.4    | Corp  | os Water Management System Forecast Runs 125                                      |
| 10.5    | Мос   | lel Linking                                                                       |
| 10.6    | Met   | eorological Forecast Processor Zones and Alternatives                             |
| 10.7    | Extr  | act Groups                                                                        |
| 10.8    | Syst  | tem Deliverables                                                                  |
| 10.9    | Rec   | ommendations for control and Visualization Interface Model Use                    |
| 10.10   | Unre  | esolved Issues with the Control and Visualization Interface Model                 |

| Section 11–Future Improvements and Recommendations for the Souris River Watershed Corps Water<br>Management System Models129 |  |
|------------------------------------------------------------------------------------------------------------------------------|--|
| References and Resources                                                                                                     |  |
| List of Acronyms and Abbreviations134                                                                                        |  |

## **LIST OF TABLES**

| Table 2-1. | Major Water Management Projects                                                              | .6 |
|------------|----------------------------------------------------------------------------------------------|----|
| Table 2-2. | Major Corps Water Management Projects Pertinent Data                                         | 7  |
| Table 2-3. | Potentially Impacted Communities                                                             | .8 |
| Table 3-1. | Corps Water Management System Team Members and Tasks                                         | .9 |
| Table 3-2. | District/Division Team Members from Kickoff Meeting1                                         | 0  |
| Table 4-1. | Precipitation Gages1                                                                         | 2  |
| Table 4-2. | Flow and Reservoir Gages Used for Modeling1                                                  | 5  |
| Table 4-3. | NCRFC Forecast Flow Locations1                                                               | 8  |
| Table 4-4. | Non-USACE Physical Data and Sources1                                                         | 9  |
| Table 4-5. | Relevant Existing Studies1                                                                   | 9  |
| Table 4-6. | List of Computer Programs Required for Corps Water Management System Watershed Modeling. 2   | 20 |
| Table 6-1. | Tributary Abbreviations                                                                      | 23 |
| Table 6-2. | Naming Examples                                                                              | 24 |
| Table 6-3. | HEC-HMS System Junctions with Real-Time Data                                                 | 0  |
| Table 6-4. | Storm Events Used for the HEC-HMS Calibration                                                | 32 |
| Table 6-5. | HEC-HMS ET Pan Coefficients                                                                  | 3  |
| Table 6-6. | Performance Ratings for Calibration for a Daily and Weekly Time Step (Moriasi et al., 2007)4 | 1  |
| Table 6-7. | Calibration Event Simulation Control Settings                                                | 3  |
| Table 6-8. | Recommended Meteorologic Model Parameters for Forecasting Purposes                           | 8  |
| Table 6-9. | HEC-HMS Forecast Alternatives                                                                | 51 |
| Table 6-10 | ). HEC-HMS SPEI Classification                                                               | 53 |
| Table 7-1. | Summary of Important Reservoir Elevations and Storage Levels                                 | 6  |
| Table 7-2  | Rafferty Reservoir Elevation-Capacity-Area Data (CGVD28)                                     | 6  |
| Table 7-3. | Grant Devine Lake Elevation-Capacity-Area Data (CGVD28)                                      | ;9 |
| Table 7-4. | Boundary Reservoir Elevation-Capacity-Area Data (CGVD28)6                                    | 60 |
| Table 7-5. | Lake Darling Elevation-Capacity-Area Data6                                                   | 51 |
| Table 7-6. | Monthly Evaporation6                                                                         | 62 |
| Table 7-7. | Operational Rules6                                                                           | ;4 |

| Table 7-8. State Variable Description (Not included in the operational rule set)                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 7-9. Time Series Flow Information                                                                                                                  |
| Table 7-10 Observed Flow Information   72                                                                                                                |
| Table 7-11. Summary of Testing and Verification Events.    73                                                                                            |
| Table 7-12. Hydrologic Engineering Center-Reservoir System Simulation Model Organization         83                                                      |
| Table 8-1. Boundary Conditions for the Souris River Watershed Hydrologic Engineering Center-River Analysis         System Verendrye to Westhope Model    |
| Table 8-2. Boundary Conditions for the Souris River Watershed Hydrologic Engineering Center-River AnalysisSystem Lake Darling Dam to Verendrye Model     |
| Table 8-3. Boundary Conditions for the Souris River Watershed Hydrologic Engineering Center-River AnalysisSystem Rafferty Dam to Lake Darling Dam Model  |
| Table 8-4. Bridges Added to the Hydrologic Engineering Center-River Analysis System Model91                                                              |
| Table 8-5. Bridges Removed from the Hydrologic Engineering Center-River Analysis System Model                                                            |
| Table 8-6. 2011 Flood Event used for Hydrologic Engineering Center-River Analysis System Verification 102                                                |
| Table 9-1. Input Data Required by Hydrologic Engineering Center-Flood Impact Analysis         118                                                        |
| Table 9-2. Critical Infrastructure Included in Hydrologic Engineering Center-Flood Impact Analysis Model 119                                             |
| Table 10-1. Program Sequence.   124                                                                                                                      |
| Table 10-2. Corps Water Management System List of Control and Visualization Interface Model Alternative Keys for the Souris River Watershed.       125   |
| Table 10-3. Corps Water Management System List of Control and Visualization Interface Model Forecast         Alternatives for the Souris River Watershed |
| Table 10-4. Meteorological Forecast Processor Alternatives    127                                                                                        |

## LIST OF FIGURES

| Figure 2-1. Souris River Watershed Location                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2-2. Souris River Watershed Major Tributaries and Water Management Projects                                                                                                                                                         |
| Figure 4-1 CONUS NEXRAD Coverage below 10,000 ft AGL14                                                                                                                                                                                     |
| Figure 4-2. Flow and Reservoir Gages Used During Calibration                                                                                                                                                                               |
| Figure 5-1. Final Corps Water Management System Watershed21                                                                                                                                                                                |
| Figure 6-1. HEC-HMS Souris River Watershed Subbasins                                                                                                                                                                                       |
| Figure 6-2. HEC-HMS Souris River Tributaries: Cooke Creek, Gibson Creek, Jewel Creek, Long Creek, Moseley Creek, Roughbark Creek, Short Creek & Tatagwa Lake Drain Subbasins                                                               |
| Figure 6-3. HEC-HMS Souris River Tributaries: Des Lacs River, Moose Mountain Creek & Shepard Creek Subbasins                                                                                                                               |
| Figure 6-4. HEC-HMS Souris River Tributaries: Bonnes Coulee, Cut Bank Creek, Deep River, Livingston Creek,<br>Molstad Coulee, Ox Creek, Snake Creek, Willow Creek & Wintering River Subbasins                                              |
| Figure 6-5. HEC-HMS Souris River Tributaries: Antler River, Auburnton Creek, Boundary Creek, Elgin Creek, Gainsborough Creek, Graham Creek, Jackson Creek, Lighting Creek, Medora Creek, Oak Creek, Pipestone Creek, Stony Creek Subbasins |

| Figure 6-6. HEC-HMS Souris River Watershed Schematic                                                        | .29  |
|-------------------------------------------------------------------------------------------------------------|------|
| Figure 6-7. Souris River HMS Reach Routing Method                                                           | .35  |
| Figure 6-8. Mod Puls Curve Adjusted Due to Similar Flow Values with Significantly Different Storage Values. | . 36 |
| Figure 6-9. Mod Puls Curve Adjusted to Ensure the Model Runs before Loss Parameters are Adjusted            | . 37 |
| Figure 6-10. Mod Puls Curve Adjusted to Increase the Attenuation                                            | . 38 |
| Figure 6-11. NSE Results for 2011 Snowmelt Event Meteorologic Model Calibration                             | .44  |
| Figure 6-12. NSE Results for 2013 Snowmelt Event Meteorologic Model Calibration                             | .45  |
| Figure 6-13. NSE Results for 2017 Snowmelt Event Meteorologic Model Calibration                             | .46  |
| Figure 6-14. Moose Mountain Reservoir Output in HEC-HMS for the 2005 Rainfall Verification Event            | .49  |
| Figure 6-15. Gridded Precipitation Data Coverage for 2009 Snowmelt Event                                    | . 50 |
| Figure 6-16. Gridded SWE Coverage for 2009 Snowmelt Event                                                   | . 50 |
| Figure 6-17. Souris River Basin Wide Application of SPEI 1980-2017                                          | . 53 |
| Figure 7-1. 2011 Event Simulated and Observed Pool and Discharge at Rafferty Reservoir                      | .74  |
| Figure 7-2. 2011 Event Simulated and Observed Pool and Discharge at Boundary Reservoir                      | .74  |
| Figure 7-3. 2011 Event Simulated and Observed Pool and Discharge at Grant Devine Lake                       | .75  |
| Figure 7-4. 2011 Event simulated and observed discharge at Sherwood, North Dakota                           | .75  |
| Figure 7-5. 2011 Event Simulated and Observed Pool and Discharge at Lake Darling                            | .76  |
| Figure 7-6. 2011 Event Simulated and Observed Discharge at Minot, North Dakota                              | .76  |
| Figure 7-7. 2013 Event Simulated and Observed Pool and Discharge at Rafferty Reservoir                      | .77  |
| Figure 7-8. 2013 Event Simulated and Observed Pool and Discharge at Boundary Reservoir                      | .77  |
| Figure 7-9. 2013 Event Simulated and Observed Pool and Discharge at Grant Devine Lake                       | .78  |
| Figure 7-10. 2013 Event Simulated and Observed Discharge at Sherwood, North Dakota                          | .78  |
| Figure 7-11. 2013 Event Simulated and Observed Pool and Discharge at Lake Darling                           | .79  |
| Figure 7-12. 2013 Event Simulated and Observed Discharge at Minot, North Dakota                             | .79  |
| Figure 7-13. 2007 Event Simulated and Observed Pool and Discharge at Rafferty Reservoir                     | . 80 |
| Figure 7-14. 2007 Event Simulated and Observed Pool and Discharge at Boundary Reservoir                     | . 80 |
| Figure 7-15. 2007 Event Simulated and Observed Pool and Discharge at Grant Devine Lake                      | .81  |
| Figure 7-16. 2007 Event Simulated and Observed Discharge at Sherwood, North Dakota                          | .81  |
| Figure 7-17. 2007 Event Simulated and Observed Pool and Discharge at Lake Darling                           | .82  |
| Figure 7-19 PMP Event Simulated Elevation and Discharge at Lake Darling                                     | .83  |
| Figure 8-1. Rating Curve Calibration - 2011 Flood Event Souris River Near Sherwood (USGS 05114000)          | .94  |
| Figure 8-2. Rating Curve Calibration - Souris River near Foxholm (USGS 05116000)                            | . 95 |
| Figure 8-3. Rating Curve Calibration - Souris River Above Minot (USGS 05117500)                             | .96  |
| Figure 8-4. Rating Curve Calibration - Souris River at Minot Broadway Bridge (USGS 05117600)                | .97  |
| Figure 8-5. Rating Curve Calibration - Souris River at Logan (USGS 480911101090200)                         | .98  |

| Figure 8-6. Rating Curve Calibration - Souris River near Verendrye (USGS 05120000)99            |
|-------------------------------------------------------------------------------------------------|
| Figure 8-7. Rating Curve Calibration - Souris River near Bantry (USGS 05122000)100              |
| Figure 8-8. Rating Curve Calibration - Souris River near Westhope (USGS 05124000)               |
| Figure 8-9. Souris River and Long Creek Confluence near Estevan, SK                             |
| Figure 8-10. Verification - 2011 Flood Souris River Near Estevan, DS side of SK Hwy 47          |
| Figure 8-11. Verification - 2011 Flood Souris River Near Estevan, DS side of Wanners Crossing   |
| Figure 8-12. Verification - 2011 Flood Souris River Near Roche Percee, US Side of Souris Avenue |
| Figure 8-13. Verification - 2011 Flood Souris River Near Roche Percee, US Side of SK Hwy 39 106 |
| Figure 8-14. Verification - 2011 Flood Souris River Near Northgate, US Side of SK Hwy 9 107     |
| Figure 8-15. Verification - 2011 Flood Souris River Near Oxbow, US side of Marconi Road         |
| Figure 8-16. Verification - 2011 Flood Souris River Near Sherwood (USGS 05114000)               |
| Figure 8-17. Verification - 2011 Flood Souris River Near Foxholm (USGS 05116000)110             |
| Figure 8-18. Verification - 2011 Flood Souris River Above Minot (USGS 05117500)                 |
| Figure 8-19. Verification - 2011 Flood Souris River At Minot Broadway (USGS 05117600)112        |
| Figure 8-20. Verification - 2011 Flood Souris River At Logan (USGS 480911101090200)113          |
| Figure 8-21. Verification - 2011 Flood Hydrograph Souris River Near Verendrye (USGS 05120000)   |
| Figure 8-22. Verification - 2011 Flood Hydrograph Souris River Near Bantry (USGS 05122000)115   |
| Figure 8-23. Verification - 2011 Flood Hydrograph Souris River Near Westhope (USGS 05124000)116 |
| Table 9-3. Flood Impact Tables by Impact Area    120                                            |
| Table 9-4. Flood Impact Analysis Results.    122                                                |

Template: MMC-TR-2018-9.01

Date of Turnover: August 21, 2020

MMC Technical Point of Contact: Andy Richter, P.E. and Kimberly Bacon, MMC Modeling Technical Leads

#### THIS PAGE INTENTIONALLY LEFT BLANK

### Prepared

The results, findings, and recommendations provided in this report are technically sound and consistent with current Corps of Engineers practice and MMC standard operating procedures (SOP) technical manual processes.

mily Moe

Prepared by Emily Moe CWMS Lead <u>November 18, 2020</u> Date

### Checked

The results, findings, and recommendations provided in this report are technically sound and consistent with current Corps of Engineers practice and MMC standard operating procedures (SOP) technical manual processes.

nnifer L Darville

Checked by Jennifer Darville MMC Technical Editor

November 18, 2020

Date

### **Reviewed and Approved**

The results, findings, and recommendations provided in this report are technically sound and consistent with current Corps of Engineers practice and MMC standard operating procedures (SOP) technical manual processes.

Approved by Robert B. Stubbs, P.E. MMC Director Date

#### THIS PAGE INTENTIONALLY LEFT BLANK

PAGES 1-84 have been removed from this version of the report as they do not pertain to the Souris River Watershed Corps Water Management System HEC-RAS model development.

### Section 8

## Hydrologic Engineering Center-River Analysis System Model Development

## 8.1 STATUS OF DISTRICT'S EXISTING HYDROLOGIC ENGINEERING CENTER-RIVER ANALYSIS SYSTEM MODEL(S)

A summary of all models received is:

- Saskatchewan Power Corporation (SaskPower) unsteady hydraulic model of the Souris River from Rafferty Dam to the USGS gage near Sherwood, ND (Barr 2018)
- USACE unsteady hydraulic model of the Souris River from Rafferty Dam to the USGS gage near Westhope, ND (USACE 2016)

These two main models formed the basis of the unsteady, HEC-RAS model. The 2018 model utilized new LiDAR data for a large portion of the model reach. The Water Security Agency of Saskatchewan (WSA) had expressed concern regarding the model calibration. The flows used for the 2011 flood calibration were average daily flows. There was additional concern that the modeler did not use all of the provided data because it was provided too late in the project schedule. The terrain generated for the model converted the LiDAR into a 3m resolution terrain and the WSA wanted the model to be at a 1m resolution. The model and terrain were not in the correct projection because feet was used instead of US feet.

The 2016 model utilized LiDAR available at the time. Since the 2016 model was finalized, Ward County had new LiDAR obtained. The cross section spacing did not meet CWMS criteria. Some 2014 channel bathmetry data between Towner and Bantry had not been included in the model. Several bridges had been missed and several more had been replaced or added since this model was completed.

The final unsteady flow models developed for the Souris River Watershed was developed in HEC-RAS 5.0.7. It consists of these three models:

- Souris River from Rafferty Reservoir to Lake Darling Dam (River Stations 640.31 to 444.86) including Long Creek from Boundary dam (River Stations 3.13 to 1.14) and Moose Mountain Creek from Grant Devine dam (River Stations 4.85 to 0.09) and an in-channel 2D area at the confluence of Long Creek and the Souris River near the City of Estevan, Saskatchewan
- Souris River from Lake Darling Dam to Verendrye (River Stations 444.77 to 323.43), including the Des Lacs River (River Station 80.759 to 0.042) and three off-channel 2D areas representing the left overbank (protected area) in the City of Minot, North Dakota, right overbank (protected area) in the City of Minot and the suburban sprawl downstream of Minot, and left overbank for the bypass channel near the Community of Logan, North Dakota
- Souris River from Verendrye to Westhope (River Stations, Souris River 346.34 to 170.91), including the Wintering River, Willow Creek and Deep River

The overall model was broken up into three smaller models based on guidance from the HEC. The area modeled covers 155 river miles in Saskatchewan and 283 river miles in North Dakota. There are four 2D flow areas in the model. Initially the model was attempted as a single model but, needed to be broken up in the CAVI at Lake Darling Dam and for ResSIM operations of Lake Darling Dam. The individual models greatly reduce run times and complexity. The individual models allows for just the area of interest to be run when operational questions arise versus the entire Souris River with faster results and the ability to make operational decisions sooner.

The reaches of the models are:

- Souris RaffertyNormal: Spans the Souris River from Rafferty dam normal outlet to the confluence with the spillway flows from Rafferty dam immediately upstream of a railroad bridge.
- Souris Spill RaffertySpill: Spans from the spillway of Rafferty dam to the confluence with the Rafferty dam normal outlet flows immediately upstream of a railroad bridge.
- Souris Upper: Spans the Souris River from the confluence of the flows from RaffertyNormal and RaffertySpill to the Estevan 2D Flow Area.
- Estevan 2D Flow Area: This is an in-channel 2D Flow Area that spans from Souris River Upper and Long Creek -2 to Souris River – Long\_to\_MooseMtn. This complex area has a split in the Souris River flows and has two locations where Long Creek flows enter one part of the Souris River before joining back together.
- Long 2: Spans the length of Long Creek from Boundary dam outlet to the confluence with the Souris River at the Estevan 2D Flow Area.
- Souris Long\_to\_MooseMtn: Spans the Souris River from the Estevan 2D Flow Area to the confluence with Moose Mountain Creek.
- Moose Mtn Moose Mtn: Spans the length of Moose Mountain Creek from Grant Devine dam outlet to the confluence with the Souris River.
- Souris MooseMtn2DesLacs: Spans the Souris River from the confluence with Moose Mountain Creek to the confluence with the Des Lacs River. This span crosses the Saskatchewan – North Dakota border.
- Des Lacs Des Lacs: Spans the Des Lacs River from the outlet of the Des Lacs National Wildlife Refuge to the confluence with the Souris River.
- Souris DesLacsWintering: Spans the Souris River from the confluence with the Des Lacs River to the confluence with the Wintering River. There are three off-channel 2D Flow Areas in the reach: Minot LOB, Minot DS\_ROB, and Logan\_Bypass.
- Wintering Wintering: Spans the Wintering River from the USGS gage near Karlsrhue to the confluence with the Souris River.
- Souris Wintering2Willow: Spans the Souris River from the confluence with the Wintering River to the confluence with Willow Creek.
- Willow Willow: Spans the Willow Creek from the USGS gage near Willow City to the confluence with the Souris River.
- Souris Willow\_to\_Deep: Spans the Souris River from the confluence with Willow Creek to the confluence with the Deep River.
- Deep Deep: Spans the Deep River from the USGS gage near Upham to the confluence with the Souris River.
- Souris Deep\_to\_Westhope: Spans the Souris River from the confluence with the Deep River to the USGS gage on the Souris River near Westhope.

#### 8.2 BOUNDARY CONDITIONS

Flow hydrographs developed in HEC-HMS were used as inflows to the Souris River watershed HEC-RAS model at the upstream end of reaches and at lateral inflows from contributing sub-basins. Rating curves from USGS gages were used for downstream boundary conditions for the Lake Darling Dam to Verendrye and Verendrye to Westhope models. The pool elevation at Lake Darling Dam was used for the downstream boundary condition for the Rafferty to Lake Darling Dam model. Tables 8-1 through 8-3 provides a summary of the unsteady boundary conditions, file names, and file paths.

 Table 8-1. Boundary Conditions for the Souris River Watershed Hydrologic Engineering Center-River Analysis

 System Verendrye to Westhope Model

| River     | Reach                | River<br>Station | Boundary<br>Condition<br>Type | DSS File<br>Name | DSS Path Name                                           |
|-----------|----------------------|------------------|-------------------------------|------------------|---------------------------------------------------------|
| Souris    | Deep_to_W<br>estHope | 172.03           | Flow<br>Hydrograph            | \\forecast.dss   | //SO11LG_Westhope/FLOW-<br>LOCAL//1HOUR/BASE0/          |
| Souris    | Deep_to_W<br>estHope | 187.5            | Flow<br>Hydrograph            | \\forecast.dss   | //SO12LJ_Dam341/FLOW-<br>LOCAL//1HOUR/BASE0/            |
| Souris    | Deep_to_W<br>estHope | 196.34           | Flow<br>Hydrograph            | \\forecast.dss   | //SO14AJ_Dam332/FLOW-<br>LOCAL//1HOUR/BASE0/            |
| Souris    | Deep_to_W<br>estHope | 196.87           | Flow<br>Hydrograph            | \\forecast.dss   | //SO14J_DeepRivConf/FLOW-<br>LOCAL//1HOUR/BASE0/        |
| Souris    | Willow_to_<br>Deep   | 201.77           | Flow<br>Hydrograph            | \\forecast.dss   | //SO15LJ_Dam326/FLOW-<br>LOCAL//1HOUR/BASE0/            |
| Souris    | Willow_to_<br>Deep   | 204.96           | Flow<br>Hydrograph            | \\forecast.dss   | //SO15J_Dam326/FLOW-<br>LOCAL//1HOUR/BASE0/             |
| Souris    | Willow_to_<br>Deep   | 209.51           | Flow<br>Hydrograph            | \\forecast.dss   | //SO16LJ_Dam320/FLOW-<br>LOCAL//1HOUR/BASE0/            |
| Souris    | Willow_to_<br>Deep   | 215.04           | Flow<br>Hydrograph            | \\forecast.dss   | //SO16J_Dam320/FLOW-<br>LOCAL//1HOUR/BASE0/             |
| Souris    | Willow_to_<br>Deep   | 226.06           | Flow<br>Hydrograph            | \\forecast.dss   | //SO17J_SaylerPool320/FLOW-<br>LOCAL//1HOUR/BASE0/      |
| Willow    | Willow               | 10.4             | Flow<br>Hydrograph            | \\forecast.dss   | //WI02G_Willow City/FLOW//1HOUR/BASE<br>0/              |
| Souris    | Wintering2<br>Willow | 245.53           | Flow<br>Hydrograph            | \\forecast.dss   | //SO18G_Bantry/FLOW-<br>LOCAL//1HOUR/BASE0/             |
| Souris    | Wintering2<br>Willow | 272.96           | Flow<br>Hydrograph            | \\forecast.dss   | //SO19J_Tow ner/FLOW-<br>LOCAL//1HOUR/BASE0/            |
| Souris    | Wintering2<br>Willow | 303.02           | Flow<br>Hydrograph            | \\forecast.dss   | //SO20J_WinteringRiverConf/FLOW-<br>LOCAL//1HOUR/BASE0/ |
| Souris    | DesLacsWi<br>ntering | 323.43           | Flow<br>Hydrograph            | \\forecast.dss   | //SO21G_Verendrye/FLOW-<br>LOCAL//1HOUR/BASE0/          |
| Deep      | Deep                 | 7.82             | Flow<br>Hydrograph            | \\forecast.dss   | //DP01J_DeepRiverTown/FLOW-<br>LOCAL//1HOUR/BASE0/      |
| Deep      | Deep                 | 20.9             | Flow<br>Hydrograph            | \\forecast.dss   | //DP02G_Upham/FLOW//1HOUR/BASE0/                        |
| Souris    | DesLacsWi<br>ntering | 346.34           | Flow<br>Hydrograph            | \\forecast.dss   | //SO22J_Velva/FLOW//1HOUR/BASE0/                        |
| Wintering | Wintering            | 16.38            | Flow<br>Hydrograph            | \\forecast.dss   | //WN01G_KARLSRUHE/FLOW-<br>LOCAL/1HOUR/BASE0/           |

## Table 8-2. Boundary Conditions for the Souris River Watershed Hydrologic Engineering Center-River AnalysisSystem Lake Darling Dam to Verendrye Model

| River    | Reach                | River<br>Station | Boundary<br>Condition<br>Type | DSS File<br>Name | DSS Path Name                                       |
|----------|----------------------|------------------|-------------------------------|------------------|-----------------------------------------------------|
| Souris   | DesLacs<br>Wintering | 323.43           | Flow<br>Hydrograph            | \\forecast.dss   | //SO21G_Verendrye/FLOW-<br>LOCAL//1HOUR/BASE0/      |
| Souris   | DesLacs<br>Wintering | 354.45           | Flow<br>Hydrograph            | \\forecast.dss   | //SO22J_Velva/FLOW-<br>LOCAL//1HOUR/BASE0/          |
| Souris   | DesLacs<br>Wintering | 367.7            | Flow<br>Hydrograph            | \\forecast.dss   | //SO23J_Sawyer/FLOW-<br>LOCAL//1HOUR/BASE0/         |
| Souris   | DesLacs<br>Wintering | 378.78           | Flow<br>Hydrograph            | \\forecast.dss   | //SO24J_PuppDog/FLOW-<br>LOCAL//1HOUR/BASE0/        |
| Souris   | DesLacs<br>Wintering | 393.12           | Flow<br>Hydrograph            | \\forecast.dss   | //SO25J_MinotEast/FLOW-<br>LOCAL//1HOUR/BASE0/      |
| Souris   | DesLacs<br>Wintering | 402.55           | Flow<br>Hydrograph            | \\forecast.dss   | //SO26J_MinotGassman/FLOW-<br>LOCAL//1HOUR/BASE0/   |
| Souris   | DesLacs<br>Wintering | 403.54           | Flow<br>Hydrograph            | \\forecast.dss   | //SO26G_Minot/FLOW-<br>LOCAL//1HOUR/BASE0/          |
| Souris   | DesLacs<br>Wintering | 410.61           | Flow<br>Hydrograph            | \\forecast.dss   | //SO27J_Burlington/FLOW-<br>LOCAL//1HOUR/BASE0/     |
| Des Lacs | Des Lacs             | 8.796            | Flow<br>Hydrograph            | \\forecast.dss   | //DL02J_UpstreamTasker/FLOW-<br>LOCAL//1HOUR/BASE0/ |
| Des Lacs | Des Lacs             | 21.761           | Flow<br>Hydrograph            | \\forecast.dss   | //DL032G_Foxholm/FLOW-<br>LOCAL//1HOUR/BASE0/       |
| Des Lacs | Des Lacs             | 80.759           | Flow<br>Hydrograph            | \\forecast.dss   | //DL02LJ_LowerDesLacs8/FLOW//1HOUR<br>/BASE0/       |
| Souris   | MooseMtn<br>2DesLacs | 430.1            | Flow<br>Hydrograph            | \\forecast.dss   | //SO28G_Foxholm/FLOW-<br>LOCAL//1HOUR/BASE0/        |
| Souris   | MooseMtn<br>2DesLacs | 444.77           | Flow<br>Hydrograph            | \\forecast.dss   | //Lake Darling-Pool/FLOW-<br>OUT//1HOUR/BASE0/      |

Table 8-3. Boundary Conditions for the Souris River Watershed Hydrologic Engineering Center-River AnalysisSystem Rafferty Dam to Lake Darling Dam Model

| River        | Reach                | River<br>Station | Boundary<br>Condition<br>Type | DSS File<br>Name | DSS Path Name                                        |
|--------------|----------------------|------------------|-------------------------------|------------------|------------------------------------------------------|
| Souris       | MooseMtn<br>2DesLacs | 430.15           | Flow<br>Hydrograph            | \\forecast.dss   | //SO28G_Foxholm/FLOW-<br>LOCAL//1HOUR/BASE0/         |
| Souris       | MooseMtn<br>2DesLacs | 444.86           | Flow<br>Hydrograph            | \\forecast.dss   | //Lake Darling-Pool/ELEV//1HOUR/BASE<br>0/           |
| Souris       | MooseMtn<br>2DesLacs | 469.97           | Flow<br>Hydrograph            | \\forecast.dss   | //SO29J_Darling/FLOW-<br>LOCAL//1HOUR/BASE0/         |
| Souris       | MooseMtn<br>2DesLacs | 474.22           | Flow<br>Hydrograph            | \\forecast.dss   | //SO30J_Tolley/FLOW-<br>LOCAL//1HOUR/BASE0/          |
| Souris       | MooseMtn<br>2DesLacs | 508.56           | Flow<br>Hydrograph            | \\forecast.dss   | //SO31G_Sherwood/FLOW-<br>LOCAL//1HOUR/BASE0/        |
| Souris       | MooseMtn<br>2DesLacs | 554.71           | Flow<br>Hydrograph            | \\forecast.dss   | //SO32J_Oxbow/FLOW-<br>LOCAL//1HOUR/BASE0/           |
| Moose<br>Mtn | Moose<br>Mtn         | 4.85             | Flow<br>Hydrograph            | \\forecast.dss   | //Grant Devine Lake-Pool/FLOW-<br>OUT//1HOUR/BASE0/  |
| Souris       | Long_to_<br>MooseMtn | 615.5            | Flow<br>Hydrograph            | \\forecast.dss   | //SO33J_RochePercee/FLOW-<br>LOCAL//1HOUR/BASE0/     |
| Souris       | Long_to_<br>MooseMtn | 633.45           | Flow<br>Hydrograph            | \\forecast.dss   | //SO34J_Estevan/FLOW//1HOUR/BASE<br>0/               |
| Long         | 2                    | 3.13             | Flow<br>Hydrograph            | \\forecast.dss   | //LO01LG_BoundaryInflow/FLOW//1HOUR<br>/BASE0/       |
| Souris       | RaffertyN<br>ormal   | 640.31           | Flow<br>Hydrograph            | \\forecast.dss   | //Rafferty Reservoir-Pool/FLOW-<br>OUT//1HOUR/BASE0/ |

#### 8.3 MODEL PARAMETERS

#### 8.3.1 Coordinate System

The coordinate system used for this project was 'USA Contiguous Albers Equal Area Conic USGS version,' which is consistent with the Mapping Modeling and Consequence Center's (MMC) guidance. The linear units used are US feet.

#### 8.3.2 Vertical Datum

The vertical datum used for this modeling effort is North America Vertical Datum 1988 (NAVD 88). The LiDAR provided by the Minnesota County data sets were already in NAVD 88. The gage data was converted from NGVD 29 to NAVD 88 based on datum adjustments provided by MVP survey personnel.

#### 8.3.3 Terrain

The model terrain originated from four North Dakota county LiDAR data sets and a LiDAR data set from Saskatchewan. The GIS team member compiled the LiDAR together to create the terrain. Once the data

manipulation was complete, the data was reviewed and provided to the HEC-RAS team member. See Section 4 Data Compilation, Digital Elevation Model for further information.

#### 8.3.4 Cross Sections

The initial cross section layout was taken from the 2016 USACE HEC-RAS model. Additional cross sections were added to meet MMC modeling criteria with a maximum channel length between cross sections of approximately 2500 feet. The cross sections were also moved to better address the topography, addition of storage areas / 2D areas, proximity to structures, extended to capture the full flooded extent, and to ensure the cross section cut line was perpendicular to the channel centerline.

#### 8.3.5 Manning's n Values

Manning's n values in the cross sections were within the range of generally accepted values, consistent with *Open Channel Hydraulics* by Chow. Initially, Manning's n values used were similar to those used in the previous HEC-RAS models. Final Manning's n values in the 1D area range from 0.028-0.037 in the channel, and 0.06-0.1 in the overbanks. Manning's n values in the 2D areas in North Dakota were based on the National Land Cover Database (NLCD) 2016 Land Cover data set. The bypass channel near Logan in the Logan\_Bypass 2D flow area was entered as a polygon override area for the Manning's n value. The Manning's n values in the Estevan 2D area were based on using 0.06 in the overbank areas and defining polygons for the flowing channels and entering them as override areas.

#### 8.3.6 Lateral Structures

All lateral structures in the models were redone to better follow high ground and/or levees, define additional storage areas, improve the layout in regards to cross sections and structures, and geo-reference the lateral structures. Lateral structure elevations were taken from surveyed levee elevations, National Levee Database (NLD) and LiDAR as a last resort, especially in Saskatchewan.

#### 8.3.7 Bridges

Several bridges were missing in the existing models. Data for new bridges on US, North Dakota, county or city roads were obtained from the county or city in which they were located usually in the form of bridge drawings. A couple of bridges were discovered simply from looking at aerial photos over time, generally using the historical imagery feature of Google Earth to determine a rough time period over which the bridge was put in place. These two bridges that were discovered in this manner were brought to the attention of the county engineer to obtain more information of which there was none other than finding out that they were "approved" as at-grade, slab bridges. The data for these two at-grade, slab bridges was assumed based on other small bridges in the area. See Table 8-4.

| Bridge Description                                                              | River  | Reach            | River Station |
|---------------------------------------------------------------------------------|--------|------------------|---------------|
| Minot NW US Hwy 83 Bypass<br>Southbound (new)                                   | Souris | DesLacsWintering | 400.15        |
| Minot NW US Hwy 83 Bypass<br>Northbound (replacement)                           | Souris | DesLacsWintering | 400.13        |
| Minot Broadway (US Hwy 83)<br>Viaduct (Southbound & Northbound<br>replacements) | Souris | DesLacsWintering | 396.38        |
| ATV access (Pre 9/1997)                                                         | Souris | DesLacsWintering | 378.3         |
| Gravel Pit access (Before 6/2017)                                               | Souris | DesLacsWintering | 371.58        |
| 49 <sup>th</sup> St N (replacement)                                             | Souris | DesLacsWintering | 330.47        |
| ND Hwy 14 (replacement)                                                         | Souris | Wintering2Willow | 272.93        |

Table 8-4. Bridges Added to the Hydrologic Engineering Center-River Analysis System Model

A bridge on the Des Lacs River was removed from the model simply because the river had formed a cutoff from the original channel meander sometime between August 2013 and May 2016. Several bridges on the Souris River between Verendrye and Towner seemed to have been removed because they had been severely damaged during recent flood events (2011 and 2013). Table 8-5 provides the bridges that were removed and their locations.

Table 8-5. Bridges Removed from the Hydrologic Engineering Center-River Analysis System Model

| Bridge Description            | River          | Reach            | <b>River Station</b> |  |
|-------------------------------|----------------|------------------|----------------------|--|
| Field Crossing, wooden bridge | Des Lacs River | Des Lacs         | 40.83                |  |
| 58 <sup>th</sup> Street       | Souris         | Wintering2Willow | 289.79               |  |
| Old US Hwy 2                  | Souris         | Wintering2Willow | 283.08               |  |
| Follman Road                  | Souris         | Wintering2Willow | 275.485              |  |

#### 8.3.8 Inline Structures

The HEC-RAS models contain 44 inline structures. In Saskatchewan there were seven inline structures; with two inline structures modeled using as-built plan sets and one modeled based on survey data. In North Dakota there were 7 inline structures modeled from as-built plan sets for US Fish and Wildlife Service dams; 5 inline structures from USGS gage measurement sites, 5 inline structures for irrigation organization purposes, and 15 inline structures built by USACE as part of the Souris River Basin Flood Control project mostly as grade control for the many oxbow cutoffs. The USACE inline structures were modeled using as-built plan sets and updated with survey data when available. When no other information was available the profile of the weir was taken from LiDAR data. Lake Darling Dam was removed from the models because the model reaches were broken at Lake Darling Dam.

#### 8.3.9 Ineffective Areas

Ineffective flow areas at bridges were set to the expected slope of the water surface profile across the bridge. Ineffective flow areas in other areas were set to assist flow transition around topographical features. Due to the complexity of the models and based on guidance from the HEC all of the ineffective flow areas were set to permanent.

#### 8.3.10 HTab Parameters

The hydraulic property table (HTab) parameters were adjusted for better performance in the unsteady flow model. Smaller increment sizes were used to increase the number of slices and hence model accuracy. In addition, the HTab parameters were adjusted for the bridges to better define the HTab curves for the bridges.

#### 8.4 MODEL CALIBRATION

Model calibration was approached differently in Saskatchewan and North Dakota due to differences in data collection and availability.

In North Dakota calibration was conducted based on rating curves created from discharge and stage measurements at USGS gages from 2011 to present. The 2011 flood of record was much larger than any other floods and in some areas there were significant changes to the channel geometry as a result of the flood. The HEC-RAS calculated rating curves were compared to the rating curves from the USGS discharge measurement data to verify that the HEC-RAS model was responding appropriately for a given flow. The calibration process involved a fictitious event similar to but larger than the 2011 flood event, such that the entire hydrograph had a very wide range of flows. It is believed that calibrating to the observed data and rating curves with a fictitious events is sufficient, but continuous calibration will result in a more accurate model.

In Saskatchewan, the only Environment Canada stream gages are located at the upstream ends of each river reach providing upstream boundary condition data but, there are no gages located along the Souris River between Rafferty, Boundary, and Grant Devine Dams and the USGS gage near Sherwood, North Dakota just downstream of the Saskatchewan and North Dakota border even though there are over 130 river miles in between these gages. There were no discharge measurements to use for calibration. The only calibration data available comes from the 2011 flood event and consists of water surface elevations at different times during the flood event. These water surface elevation data points fall within a reach between Rafferty Dam and near the City of Oxbow. Calibration in Saskatchewan proved to be difficult. The 2011 flood event was used for the calibration in Saskatchewan because the pool elevation at Lake Darling Dam could be used as the downstream boundary condition.

During the calibrating process of the HEC-RAS model, various parameters were adjusted with the attempt to match the rating curves and observed data. Manning's n values, ineffective flow areas, weir coefficients, and hydraulic tab parameters were the main features adjusted during the calibration efforts.

Ideally, the model results would be compared to observed stage and flow hydrographs for specific events, but due to time and data restrictions, the model was calibrated based on rating curves and observed data. Due to time and data constraints, the 2011 flood event was used for model verification.

These USGS gages provided calibration data for the HEC-RAS model in North Dakota:

- Souris River near Sherwood, ND, USGS 05114000
- Souris River near Foxholm, ND, USGS 05116000
- Souris River above Minot, ND, USGS 05117500
- Souris River at Broadway Bridge at Minot, ND, USGS 05117600
- Souris River at Logan, ND, USGS 480911101090200
- Souris River at Verendrye, ND USGS 05120000
- Souris River near Bantry, ND, USGS 05122000
- Souris River near Westhope, ND, USGS 05124000

These gages reported both stage and flow values and use NAVD 88. The USGS gage at Logan, North Dakota is a temporary, rapid deployment gage that the North Dakota State Water Commission funds during flood years

to provide critical information for the communities downstream of Minot, North Dakota. The gage is resurveyed and set to the same vertical datum each year at the same georeferenced location to provide consistency. The Souris River gage near Westhope is the downstream boundary of the model and the rating curve there is the downstream boundary condition.

The 2011 flood of record had extreme flood fighting used in the City of Minot. The 1 percent annual chance exceedance event before 2011 was 5,000 cfs. After the hydrology was redone in 2013, the 1 percent annual chance exceedance event increased to 10,000 cfs. In comparison, the annual peak flow for 2011 at Minot was 26,900 cfs. A very high emergency levee was built on the upstream side of Broadway Bridge to keep emergency vehicle access open between both sides of the river which resulted in peak water surface at the upstream side of the bridge much higher than would have been expected without the emergency levee in place. Because the geometry does not have this emergency levee in place, the artificially high data points from the 2011 flood event were excluded from the rating curve for higher flows when the emergency levee was in place.

Flow roughness factors were used along the length of the Souris River model geometry to take into account the reduction in roughness at high flows to aid in calibration. The weir coefficients of the many lateral structures along the Souris River were also adjusted to calibrate the model.

#### 8.5 CALIBRATION EVENTS AND RESULTS

The results of the calibration efforts can be found in the rating curves in Figure 8-1 to Figure 8-11, from upstream to downstream. The results for the fictitious calibration event are plotted against the gage rating curves and measured data. In most cases the RAS rating curves follow the rating curve and/or within the observed data. While calibrating there were areas of greater difficulty, but in most cases calibration was possible for a majority of the flows along the rating curves.

The main challenging area in North Dakota was at the Verendrye gage which is complicated by the large complex of the Eaton Irrigation District between the Bantry and Verendrye USGS gages. The Eaton Irrigation District has an inline dam and many storage areas, lateral structures and storage area connections. The condition of any gates on these structures as well as the regular operation is unknown. It was verified with the Eaton Irrigation District that all of the gates on all of the structures in the lateral structures and storage area connections were wide open during the 2011 flood event so these same conditions were assumed for the calibration event. No calibration data was available within the Eaton Irrigation District.

In Saskatchewan the entire reach was challenging due to the lack of data. The only gage data available was at the upstream boundaries of all of the reaches which defined the upstream boundary condition. No discharge measurements. There are no gages in Saskatchewan on the Souris River from downstream of Rafferty Reservoir to the USGS gage near Sherwood even though there are over 130 river miles in between these gages.

Figures 8-1 through 8-8 show the HEC-RAS calibration results at the USGS gages along the Souris River.

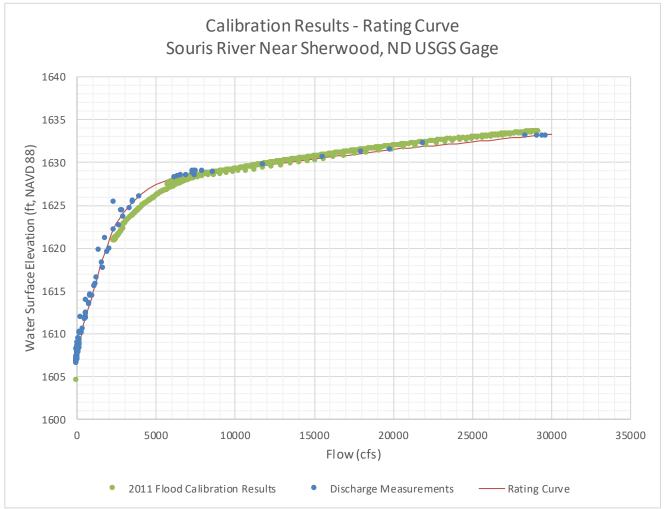



Figure 8-1. Rating Curve Calibration - 2011 Flood Event Souris River Near Sherwood (USGS 05114000)

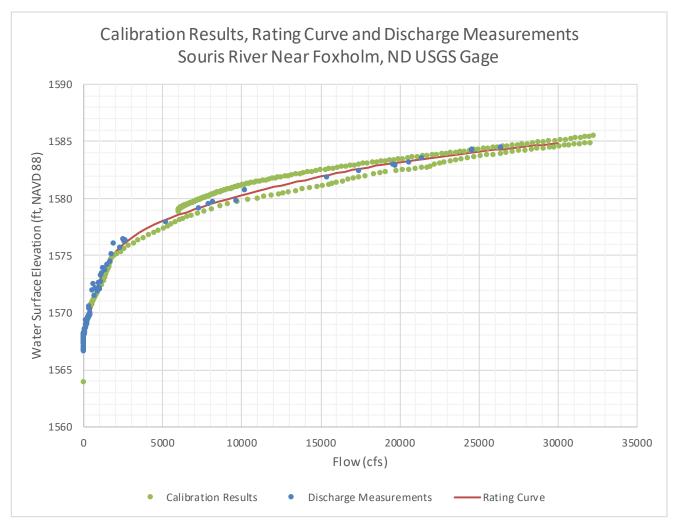



Figure 8-2. Rating Curve Calibration - Souris River near Foxholm (USGS 05116000)

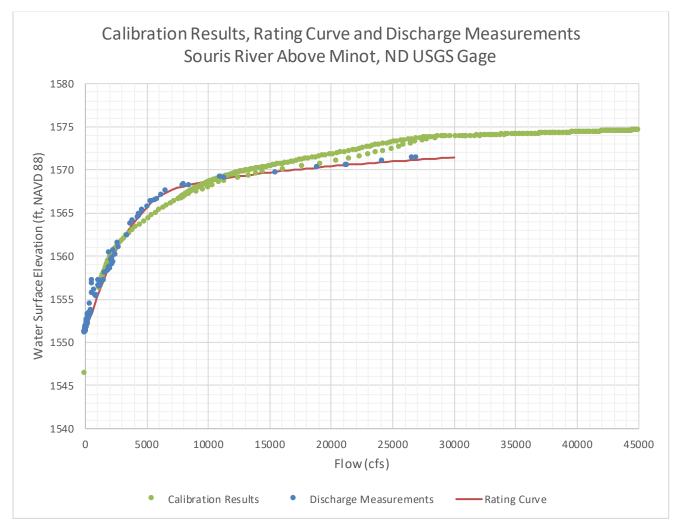



Figure 8-3. Rating Curve Calibration - Souris River above Minot (USGS 05117500)

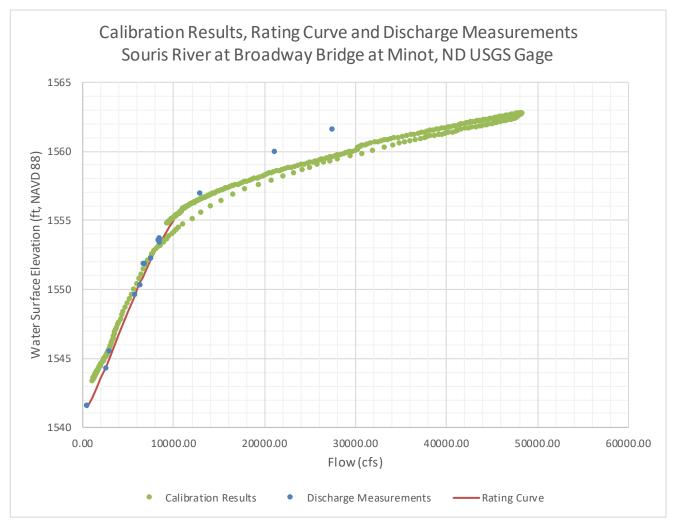



Figure 8-4. Rating Curve Calibration - Souris River at Minot Broadway Bridge (USGS 05117600)

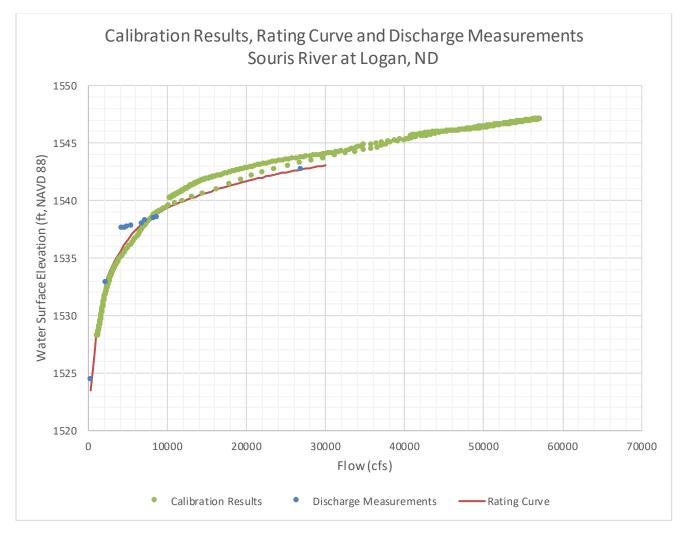



Figure 8-5. Rating Curve Calibration - Souris River at Logan (USGS 480911101090200)




Figure 8-6. Rating Curve Calibration - Souris River near Verendrye (USGS 05120000)

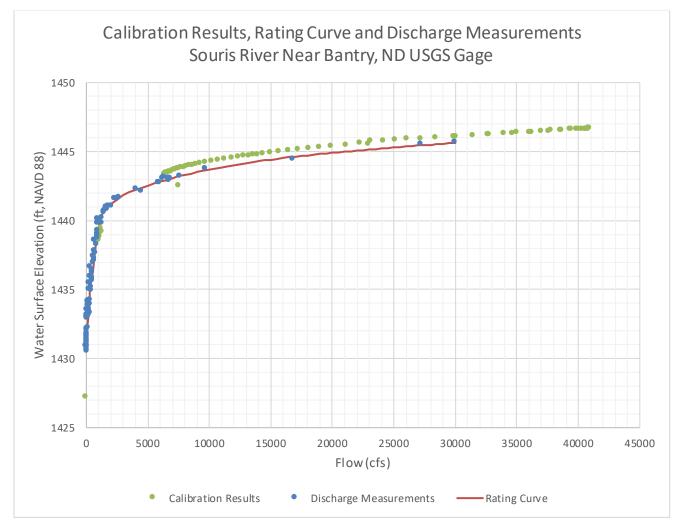



Figure 8-7. Rating Curve Calibration - Souris River near Bantry (USGS 05122000)

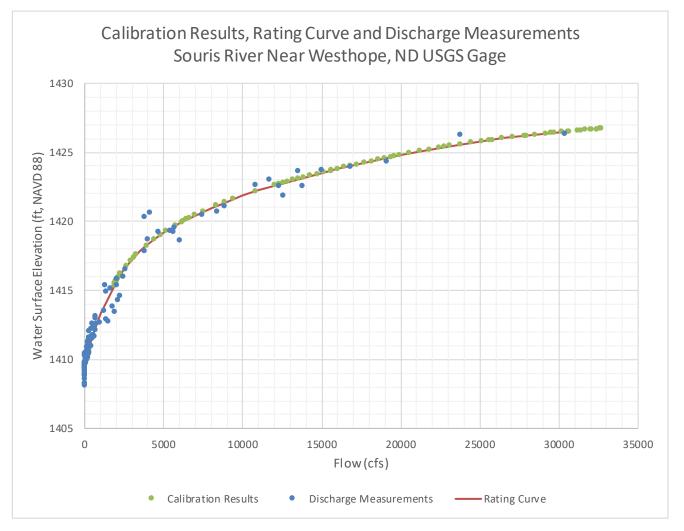



Figure 8-8. Rating Curve Calibration - Souris River near Westhope (USGS 05124000)

#### 8.6 VERIFICATION EVENTS AND DISCUSSION

The 2011 flood event was used for model verification. The dates of the 2011 flood event used are listed in Table 8-6. Modeling actually started in May due to the prolonged flood event with multiple smaller peaks before the large one; however, the results presented use the timeframes below.

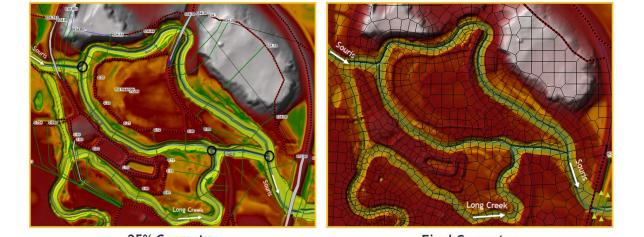
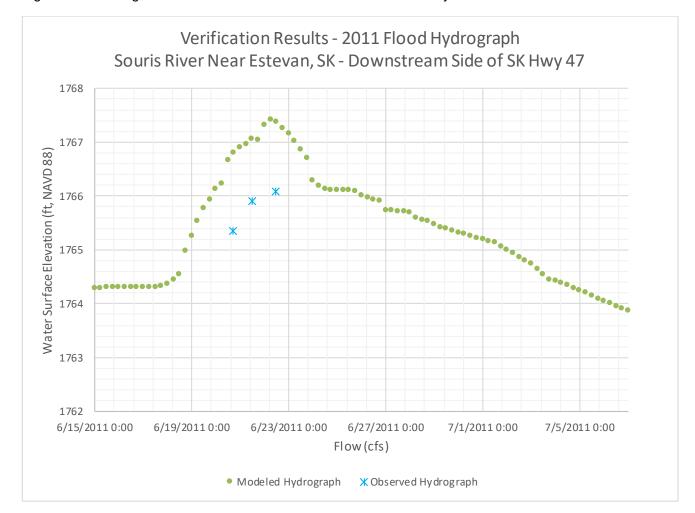

| Hydrologic Engineering Center-River Analysis System Simulation Period |            |            |            |          |  |  |
|-----------------------------------------------------------------------|------------|------------|------------|----------|--|--|
| Model                                                                 | Start Date | Start Time | End Date   | End Time |  |  |
| Rafferty to Lake Darling                                              | 06/14/2011 | 12:00      | 07/07/2011 | 00:00    |  |  |
| Lake Darling Dam to Verendrye                                         | 06/19/2011 | 12:00      | 07/13/2011 | 18:00    |  |  |
| Verendrye to Westhope                                                 | 06/19/2011 | 12:00      | 07/13/2011 | 18:00    |  |  |

Table 8-6. 2011 Flood Event used for Hydrologic Engineering Center-River Analysis System Verification

The verification results can be found in Figure 8-11 to Figure 8-23. Flood event verification compared the hydrographs of the modeled event with the hydrograph of the gage data for the same flood event. The flow hydrograph is shown for all of the gage locations in North Dakota except for Logan and Minot Broadway since the gage record there only records stage. The Logan and Minot Broadway gages and all of the locations in Saskatchewan are shown using a stage hydrograph.


In Saskatchewan the entire reach was challenging due to the lack of data. As stated before, the only gage data available was at the upstream boundaries of all of the reaches which defined the upstream boundary condition. There were no available discharge measurements along the rest of the reach. The flows from local runoff were estimated based on the North Central River Forecast Center's modeled flows and provide a source of uncertainty. Another possible source of error could be in the vertical datum conversion from the Geodetic Survey of Canada 1928 to NAVD 88. All of the surveyed water surface elevations in Saskatchewan were much lower than the modeled simulation shows with the stage hydrograph, although the shape of the surveyed data points does seem to follow the modeled hydrograph.

Also in Saskatchewan, there are many storage areas, lateral structures and storage area connections in the reach between Rafferty reservoir and through Estevan. Additionally, the area near Estevan is very complex. The Souris River splits, on one of the splits Long Creek enters and joins the partial Souris River flows before coming back together with the other split of the Souris River. This complex area is shown in Figure 8-9. The left image shows the geometry at the 25 percent review with the three junctions, and each individual river along with the many storage areas. The right image shows the final geometry where the entire confluence area has been changed into a 2D flow area.



25% Geometry Final Geometry Figure 8-9. Souris River and Long Creek Confluence near Estevan, SK

The routing of flows through the geometry seems to have shifted the peak water surface elevation or flow slightly in many locations. Refining the calibration and verification further was beyond the scope of the CWMS project.



Figures 8-10 through 8-23 show the HEC-RAS verification results at key locations within the watershed.

Figure 8-10. Verification - 2011 Flood Souris River Near Estevan, DS side of SK Hwy 47

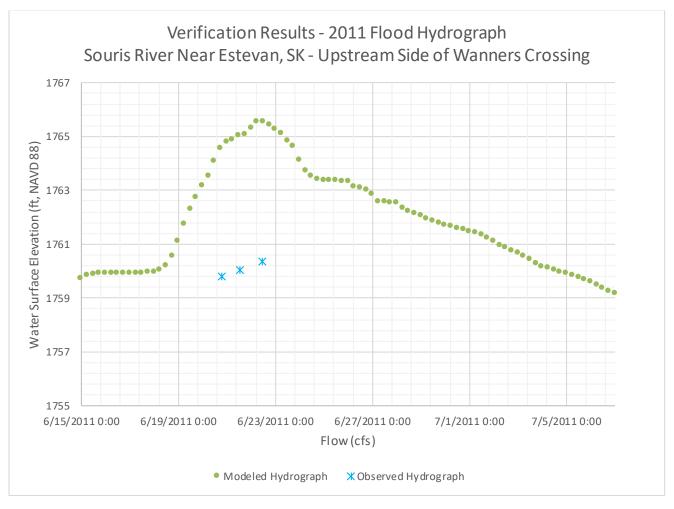



Figure 8-11. Verification - 2011 Flood Souris River Near Estevan, DS side of Wanners Crossing

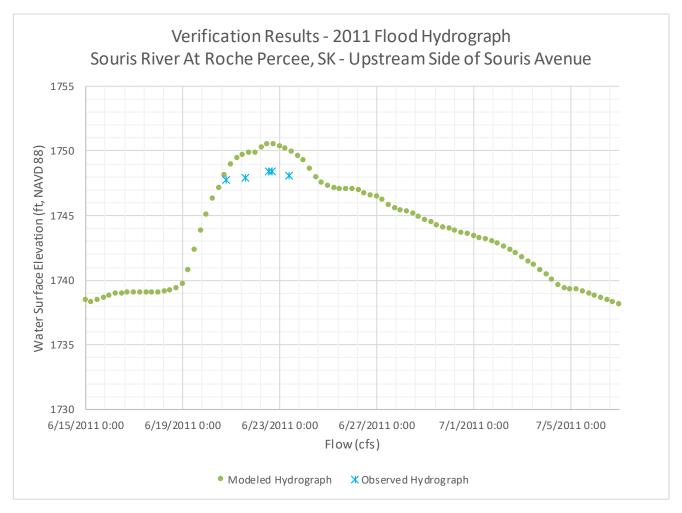



Figure 8-12. Verification - 2011 Flood Souris River Near Roche Percee, US Side of Souris Avenue

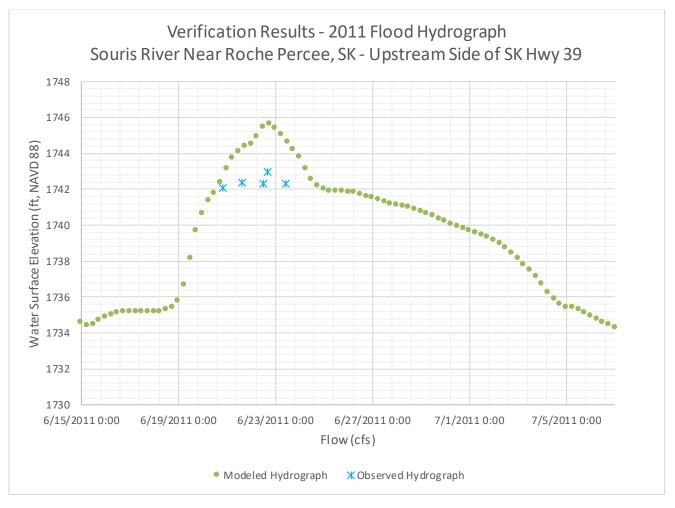



Figure 8-13. Verification - 2011 Flood Souris River Near Roche Percee, US Side of SK Hwy 39

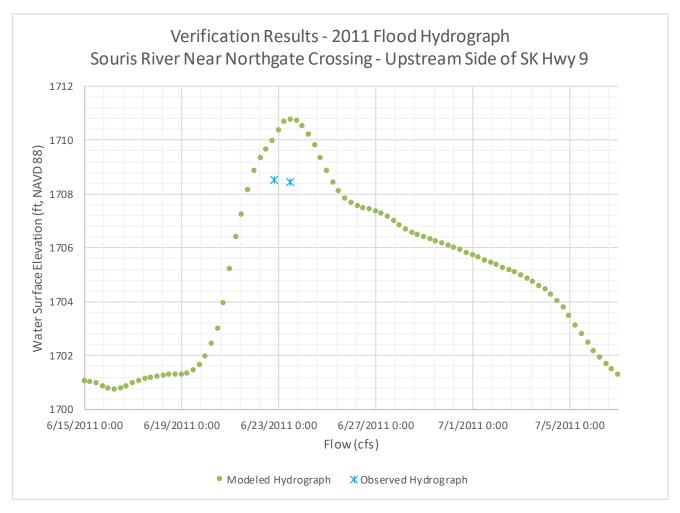



Figure 8-14. Verification - 2011 Flood Souris River Near Northgate, US Side of SK Hwy 9

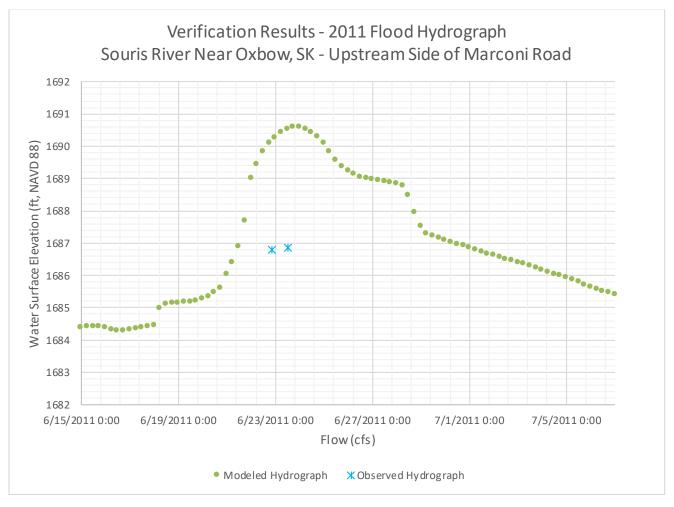



Figure 8-15. Verification - 2011 Flood Souris River Near Oxbow, US side of Marconi Road

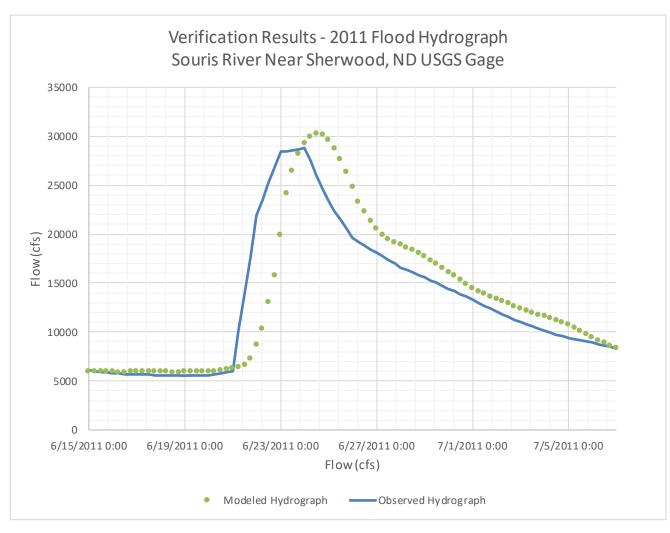



Figure 8-16. Verification - 2011 Flood Souris River Near Sherwood (USGS 05114000)

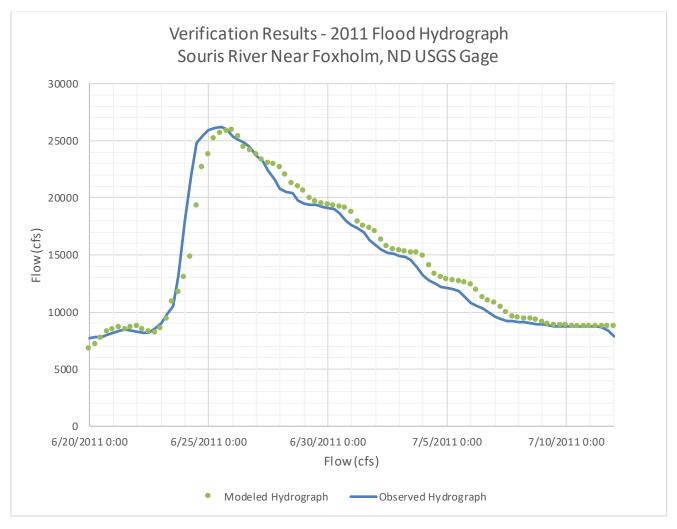



Figure 8-17. Verification - 2011 Flood Souris River Near Foxholm (USGS 05116000)

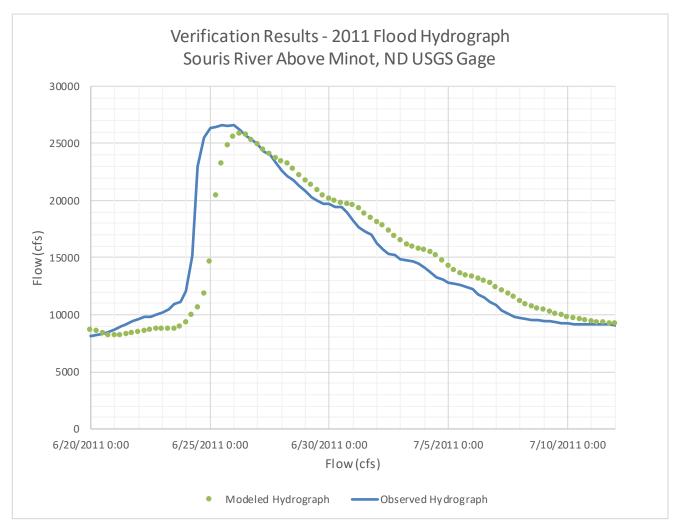



Figure 8-18. Verification - 2011 Flood Souris River Above Minot (USGS 05117500)

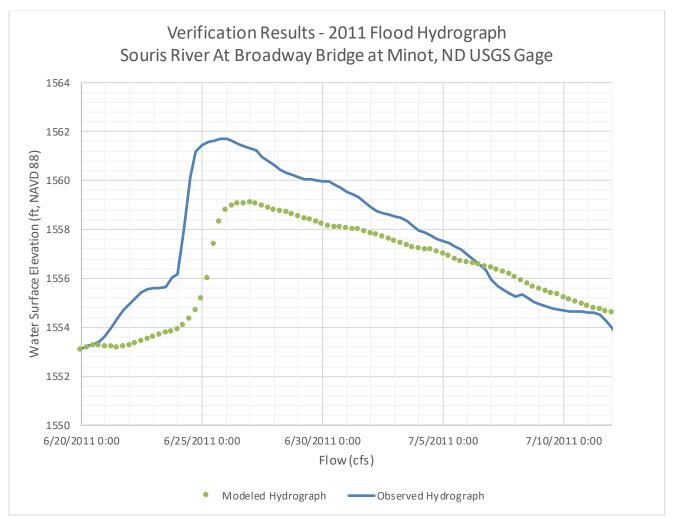



Figure 8-19. Verification - 2011 Flood Souris River At Minot Broadway (USGS 05117600)

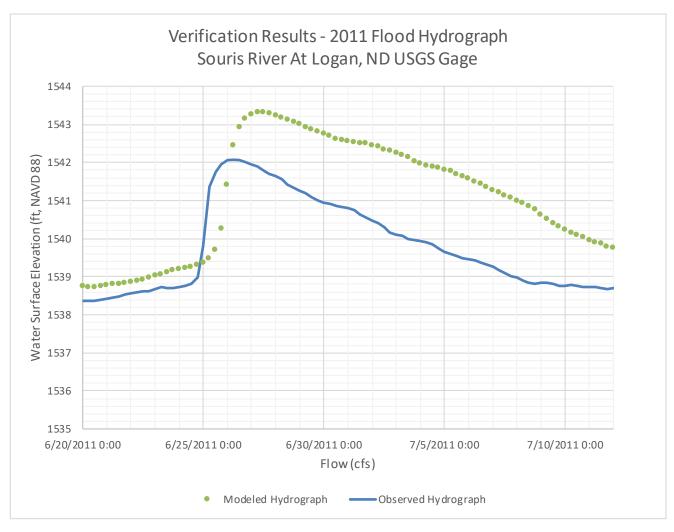



Figure 8-20. Verification - 2011 Flood Souris River At Logan (USGS 480911101090200)

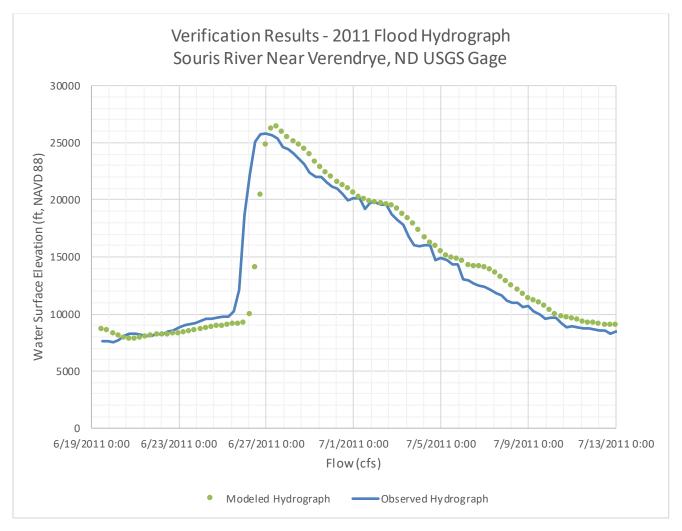



Figure 8-21. Verification - 2011 Flood Hydrograph Souris River Near Verendrye (USGS 05120000)

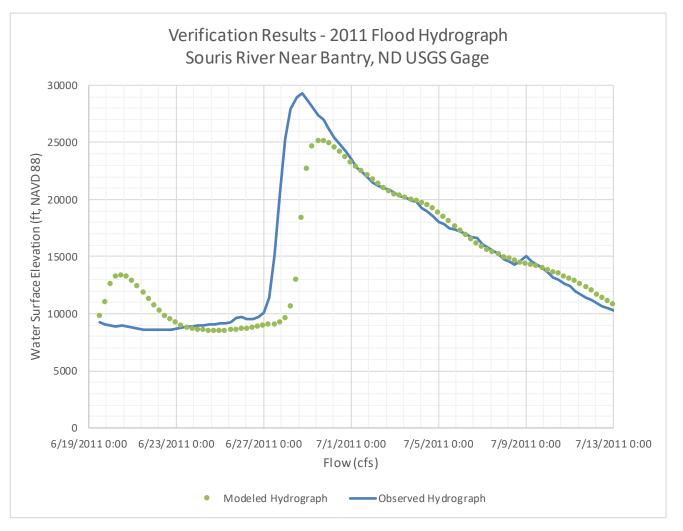



Figure 8-22. Verification - 2011 Flood Hydrograph Souris River Near Bantry (USGS 05122000)

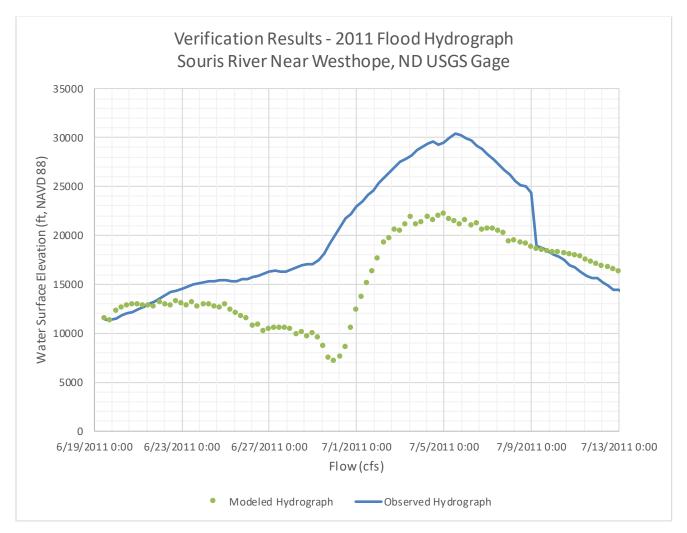



Figure 8-23. Verification - 2011 Flood Hydrograph Souris River Near Westhope (USGS 05124000)

### 8.7 RECOMMENDATIONS FOR HYDRAULIC ENGINEERING CENTER-RIVER ANALYSIS SYSTEM MODEL USE

Based on the calibration and verification results, the HEC-RAS model for the [Watershed] Basin can be used on a regular basis for water management forecasting purposes. A wide range of flows were run and the model proved to be stable for both low and high flows. Inundation maps can also be generated from the HEC-RAS model during times of high water. Further calibration of the HEC-RAS model is recommended before using the model for other purposes such as design of flood risk management projects.

### 8.8 UNRESOLVED ISSUES WITH HYDROLOGIC ENGINEERING CENTER-RIVER ANALYSIS SYSTEM MODEL

There are areas where the district can continue to improve the HEC-RAS model. The flowing areas are areas where further model development would be required to increase model results accuracy.

The reach of the model downstream of Verendrye, specifically in the area of the Eaton Irrigation District would benefit from obtaining better data in terms of channel geometry data and series of discharge measurements at a range of flows in reaches where no stream gages exist. The location, dimensions and inverts of all culverts

and gates through lateral structures (levees, dikes, roads, and high ground) should be identified and included in the model. Better knowledge of the operating procedures for the hydraulic structures in the J. Clark Salyer National Wildlife Refuge between the Near Bantry and Near Westhope gages would be helpful for calibrating the model further and improving the routing of flows through this area so that the modeled hydrographs better reflect the observed hydrographs.

In the Saskatchewan reach of the model the need for a series of discharge measurements at a range of flows (including a water surface elevation at the same time) is important to calibration especially since there are over 130 river miles without streamflow data. There were some channel surveys done in Saskatchewan near Estevan and Roche Percee in 2012 and 2018 but, the majority of the channel between Roche Percee and Sherwood was taken from older data, some of which was from 1940 surveys. If there was channel scouring during the 2011 flood event, channel survey collected before then would reflect a higher water surface profile in the HEC-RAS model. The location, dimensions and inverts of all culverts and gates through lateral structures (levees, dikes, roads, and high ground) should be identified and included in the model. It is likely that many of these are missing from the model especially in Saskatchewan.

The HEC-RAS model includes 80 river miles of the Des Lacs River, which enters the Souris River between Lake Darling Dam and the City of Minot. Calibration of the Des Lacs River reach of the model was not performed because another project is starting in July 2020 focused on the Des Lacs River Inundation Mapping through another program. All of the model geometry edits and calibration will be performed in detail by that project and will need to be incorporated into the CWMS model upon project completion.

While the remainder of the model calibrated reasonably well to the fictitious flows, additional calibration should be conducted with the use of real-time HEC-ResSim and HEC-HMS flows. The fictitious flows provided a wide spectrum of flows to calibrate to, but they did not take into consideration that the local inflows might shift cause shifts in the rating curves. Calibrating to real time data would provide a more accurate calibration.

PAGES 118-129 have been removed from this version of the report as they do not pertain to the Souris River Watershed Corps Water Management System HEC-RAS model development.

## **References and Resources**

#### MMC/CWMS Staff

CWMS Lead:

Emily Moe St. Paul District (CEMVP) Emily.L.Moe@usace.army.mil (O) 651.290.5360

**Technical Editor** 

Jennifer Darville New Orleans District (CEMVN) Jennifer.L.Darville@usace.army.mil (O) 504.812.7295

#### **Technical Reviewer List**

| Model      | 25% Milestone     | 50% Milestone    | 75% Milestone                    | 100% Milestone    |
|------------|-------------------|------------------|----------------------------------|-------------------|
| HEC-HMS    | Jim Noren; MVP    | James Doan; HEC  | Emily Moe; MVP                   | Emily Moe; MVP    |
| HEC-ResSim | Jim Noren; MVP    | Chan Modini; HEC | Liz Nelsen; MVP                  | Liz Nelsen; MVP   |
| HEC-RAS    | Charles Boyd; MVP | Ben Stubbs; MVK  | Charles Boyd; MVP                | Charles Boyd; MVP |
| HEC-FIA    | N/A               | N/A              | Joe DeLucia; LRP                 | Joe DeLucia; LRP  |
| CAVI       | Mitch Weier; MVP  | Chan Modini; HEC | Mitch Weier & Liz<br>Nelsen; MVP | Liz Nelsen; MVP   |

#### **Project References**

U.S. Army Corps of Engineers, Mississippi Valley Division Water Management Center

U.S. Army Corps of Engineers, St. Paul District personnel

Lake Darling Dam and Reservoir Water Control Manual (November, 2012)

MMC-CWMS Standard Operating Procedures for CWMS Implementation, (February, 2016)

Hydrologic Engineering Management Plan (HEMP), Souris River Watershed, (November, 2018)

#### Websites:

MMC SharePoint: https://team.usace.army.mil/sites/NWK/pdt/MMC/CWMS/default.aspx

NWK ProjectWise: <u>pw:\\nwk-ap-ed-pwint.nwk.ds.usace.army.mil:PWNWK00\Documents\Programs and</u> <u>Activities\MMC2\Corps Water Management System. (CWMS)\</u>

#### Software

- ArcGIS, Environmental Systems Research Institute, Inc. (ESRI), ArcMap 10.4: Retrieved from <a href="http://www.esri.com/">http://www.esri.com/</a>.
- CWMS, U.S. Army Corps of Engineers, CWMS 3.1: Retrieved from \\share.hec.usace.army.mil\USACE\CWMS.
- HEC-GeoHMS, U.S. Army Corps of Engineers, HEC-GeoHMS 10.4: Retrieved from http://www.hec.usace.army.mil.
- HEC-HMS, U.S. Army Corps of Engineers, HEC-HMS 4.2: Retrieved from http://www.hec.usace.army.mil.
- HEC-ResSim, U.S. Army Corps of Engineers, HEC-ResSim 3.4: Retrieved from http://www.hec.usace.army.mil.
- HEC-GeoRAS, U.S. Army Corps of Engineers, HEC-GeoRAS 10.4: Retrieved from http://www.hec.usace.army.mil.
- HEC-RAS, U.S. Army Corps of Engineers, HEC-RAS 5.0.7: Retrieved from http://www.hec.usace.army.mil.
- HEC-FIA, U.S. Army Corps of Engineers, HEC-FIA 3.1: Retrieved from http://www.hec.usace.army.mil.
- HEC-DSSVue, U.S. Army Corps of Engineers, HEC-DSSVue 3.0: Retrieved from http://www.hec.usace.army.mil.

#### **CWMS Data Sources, Guidance, and Procedures**

- Environmental Systems Research Institute, Inc. (ESRI). 2016. "Imagery, Basemaps, Boundaries and Places, Transportation, etc." Accessed December 20. http://www.esri.com/software/arcgis/arcgisonline/features/maps
- Federal Emergency Management Agency (FEMA).2004. Publication 64, "Federal Guidelines for Dam Safety, Emergency Action Planning for Dam Owners," Washington, D.C.: Federal Emergency Management Agency (FEMA) U.S. Department of Homeland Security (DHS). <u>http://www.fema.gov/library/viewRecord.do?id=1672.</u>
  - ------. 2016. "Hazards U.S. (HAZUS) Data". Accessed December 20. http://www.fema.gov/hazus
- Gesch, D., Oimoen, M., Greenlee, S., Nelson, C., Steuck, M., and Tyler, D. 2002. "The National Elevation Dataset: Photogrammetric Engineering and Remote Sensing," v. 68, no. 1, 5-11.
- Larry Young, et al. ArcMapbook ArcMap extension for ESRI ArcGIS. http://arcmapbook.googlepages.com/.
- MMC Production Center, Standard Operating Procedures—Modeling, Mapping and Consequences, U.S. Army Corps of Engineers, April 2018.
- National Climactic Data Center (NCDC). 2016. "Weather and Climate Data." Accessed December 20. https://www.ncdc.noaa.gov/cdo-web/search.
- U.S. Army Corps of Engineers. 2008-2010 (Interim). Engineering and Construction Bulletin. "USACE Policy on Release of Inundation Maps." CECW-CE.
- ------. 2003. Economic Guidance Memorandum 04-01, "Generic Depth-Damage Relationships for Residential Structures with Basements," CECW-PG.
- . 1985. Engineer Manual 1110-2-1701: Hydropower. Washington, D.C.: U.S. Army Corps of Engineers.

- ——. 1987. Engineer Manual 1110-2-3600: Management of Water Control Systems. Washington, D.C.: U.S. Army Corps of Engineers.
- ——. 1997. Engineer Manual 1110-2-1420: Hydrologic Engineering Requirements for Reservoirs. Washington, D.C.: U.S. Army Corps of Engineers.
- ———. 1994. Engineer Manual 1110-2-1417: Flood Runoff Analysis. Washington, D.C.: U.S. Army Corps of Engineers.
- ———. 1994. Engineer Manual 1110-2-1416: River Hydraulics. Washington, D.C.: U.S. Army Corps of Engineers.
- U.S. Army Corps of Engineers, Kansas City District. "Mapping, Modeling, and Consequences Map Production Procedures," April 2009.
- U.S. Army Corps of Engineers, Hydrologic Engineering Center (HEC). 2014. "CWMS CAVI 3.0 Walkthrough," Davis, CA, September.
- . 2015. "CWMS User's Manual," Davis, CA, October.
- . 2015. "CWMS 3.0 Setup Russian River Example," Davis, CA, June.
- ———. 1980. Guideline RD-13, "Flood Emergency Plans—Guidelines for Corps Dams," USACE Hydrologic Engineering Center, Davis, CA, June.
- . 2009. "HEC-DSSVue Data Storage System Visual Utility Engine User's Manual," Davis, CA, July.
- . 2015. "HEC-FIA Flood Impact Analysis User's Manual," Davis, CA, August.
- . 2013. "HEC-GeoHMS Geospatial Hydrologic Modeling Extension User's Manual," Davis, CA, February.
- ———. 2011. "HEC-GeoRAS GIS Tools for Support of HEC-RAS using ArcGIS User's Manual," Davis, CA, February.
- . 2015. "HEC-HMS Hydrologic Modeling System Applications Guide," Davis, CA, March.
- . 2016. "HEC-HMS Hydrologic Modeling System Quick Start Guide," Davis, CA, August.
- . 2000. "HEC-HMS Hydrologic Modeling System Technical Reference Manual," Davis, CA, March.
- . 2016. "HEC-HMS Hydrologic Modeling System User's Manual," Davis, CA, August.
- . 2016. "HEC-RAS River Analysis System Applications Guide," Davis, CA, February.
- . 2016. "HEC-RAS River Analysis System Hydraulic Reference Manual," Davis, CA, February.
- . 2016. "HEC-RAS River Analysis System User's Manual," Davis, CA, February.
- . 2013. "HEC-ResSim Reservoir System Simulation Quick Start Guide," Davis, CA, May.
- ------. 2013. "HEC-ResSim Reservoir System Simulation User's Manual," Davis, CA, May.

United States Census Bureau. Census Tracts: http://www.census.gov/.

- U.S. Department of Agriculture, Farm Service Agency. 2016. "National Agriculture Imagery Program (NAIP) Images." Accessed December 20. <u>https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/</u>
- U.S. Geological Survey. 2016 "National Elevation Dataset." Accessed December 19. <u>https://nationalmap.gov/elevation.html</u>

------. "National Hydrography Dataset." Accessed December 19. http://nhd.usgs.gov/data.html

# **List of Acronyms and Abbreviations**

| CAVI       | Control and Visualization Interface                                           |  |
|------------|-------------------------------------------------------------------------------|--|
| cfs        | cubic feet per second                                                         |  |
| CIKR       | Critical Infrastructure and Key Resources                                     |  |
| CIPR       | Critical Infrastructure Protection and Resilience                             |  |
| СОР        | Community of Practice                                                         |  |
| CWMS       | Corps Water Management System                                                 |  |
| DEM        | digital elevation model                                                       |  |
| DSS        | Data Storage System                                                           |  |
| EM         | Engineering Manual                                                            |  |
| ENR        | Engineering News Record                                                       |  |
| FEMA       | Federal Emergency Management Agency                                           |  |
| FIA        | Flood Impact Analysis                                                         |  |
| GeoHMS     | Geospatial Hydrologic Model System Extension                                  |  |
| GeoRAS     | Geospatial River Analysis System Extension                                    |  |
| GIS        | Geographic Information Systems                                                |  |
| GMT        | Greenwich Mean Time                                                           |  |
| GOES       | Geostationary Operational Environmental Satellites                            |  |
| HAZUS-MH   | Hazards, U.S. Multi-Hazards                                                   |  |
| HEC        | Hydrologic Engineering Center                                                 |  |
| DSSVue     | Data Storage System Visual Utility Engineer                                   |  |
| HEC-FIA    | Hydrologic Engineering Center-Flood Impact Analysis                           |  |
| HEC-GeoRAS | Hydrologic Engineering Center-Geospatial River Analysis System<br>Extension   |  |
| HEC-GeoHMS | Hydrologic Engineering Center-Geospatial Hydrologic Model System<br>Extension |  |
| HEC-HMS    | Hydrologic Engineering Center-Hydrologic Modeling System                      |  |
| HEC-RAS    | Hydrologic Engineering Center-River Analysis System                           |  |
| HEC-ResSim | Hydrologic Engineering Center-Reservoir System Simulation                     |  |
| HEMP       | Hydrologic Engineering Management Plan                                        |  |
| HMS        | Hydrologic Modeling System                                                    |  |
|            |                                                                               |  |

| IRT     | Impact Response Table                    |
|---------|------------------------------------------|
| Lidar   | Light (Laser) Detection and Range        |
| LOC     | local                                    |
| MFP     | Meteorological Forecast Processor        |
| ММС     | Modeling, Mapping and Consequence        |
| NAD 83  | North American Datum of 1983             |
| NAVD 88 | North American Vertical Datum of 1988    |
| NASS    | National Agricultural Statistics Service |
| NCDC    | National Climatic Data Center            |
| NED     | National Elevation Dataset               |
| NGVD 29 | National Geodetic Vertical Datum of 1929 |
| NID     | National Inventory of Dams               |
| NLD     | National Levee Database                  |
| NMAS    | National Map Accuracy Standards          |
| NRCS    | Natural Resources Conservation Service   |
| NWS     | National Weather Service                 |
| QPF     | Quantitative Precipitation Forecast      |
| RAS     | River Analysis System                    |
| ResSim  | Reservoir System Simulation              |
| SCS     | Soil Conservation Service                |
| SHG     | Standard Hydrologic Grid                 |
| SI      | structure inventory                      |
| SSURGO  | Soil Survey Geographic Database          |
| USACE   | U.S. Army Corps of Engineers             |
| USGS    | U.S. Geological Survey                   |
| WCM     | water control manual                     |