Name: Brian Huberty

Date of Submission: February 6, 2018

Location: Hastings, MN

Comment:

Are the recommendations sound? No
Are any important considerations overlooked? Yes. Total Precision Agriculture Systems
Can you provide relevant examples of success in watershed management plans from your community or region that will contribute to the reports’ findings?
There are plenty of plans but they are just that...a plan...not action. What is needed is a systematic approach to measure inputs and outputs of farm systems meaning precision agriculture. This means measuring quantity and quality (nutrients) removed after every harvest so the same amount of nutrients are replaced the next year through time specific and location specific fertilizer applications instead of broadcast applications. This will reduce nutrient runoff.
Do you feel the recommendations in these reports may be of benefit to your and other watersheds dealing with nutrient issues? Not really. Similar approaches have been tried for decades and the problem continues to get worse.
Response to the International Joint Commission’s (IJC) Evaluating Watershed Management Plans, Nutrient Management Approaches in the Lake Erie Basin and Key Locations Outside of the Lake Erie Basin and Watershed Management of Nutrients in Lake Erie

The National Farmers Union – Ontario (NFU-O) is an accredited farm organization whose members work together to advocate for policies that maintain small and medium sized family farms as the primary food-producers in Canada. The NFU-O believes agriculture should be economically, socially and environmentally sustainable and lead to enriched soils, biodiverse ecosystems, financially-viable farms, healthy and safe food, and thriving rural communities. The NFU-O collaborates locally, nationally, and internationally to research, educate, and share effective solutions that lead to a better world for farm families and their communities. We appreciate this opportunity to comment on the IJC’s two most recent watershed management reports.

Discussion Question 1
The recommendations in the “Evaluating Watershed Management Plans” are sound but somewhat vague on the subject of long-term monitoring commitments and the securing of the required funding for research to generate an understanding of Lake Erie’s behaviour with the introduction of nutrients released into it from atmospheric, point and non-point sources. The NFU-O recommends there be a firm commitment to ongoing monitoring of Lake Erie as well as dedicated funding committed to research on the impact of nutrient management plans on Lake Erie’s health.

The general public and a complete list of stakeholders with a relationship to the lake need to also be involved to encourage everyone’s participation in the understanding, planning, and implementing of strategies needed to return Lake Erie to its former healthy past.

Discussion Question 2
As per Recommendation 2 pt. 5, a Lake Erie Partnership should consist of federal, state, provincial regulators/managers, tribal, First Nation, Metis, sport fishing/recreational, municipal, conservation, academic, and private industry stakeholders.

Recommendation 2 pt. 6 needs more expansion of a public presence. A strategy for soliciting public opinion and generating public awareness should be developed and implemented so that basin/watershed stakeholders understand the problem that they are now facing.

In the planning of its “efficient and effective monitoring program,” recommendation 2 pt. 7 requires a strategic, nearshore, wet-weather event focus as these occurrences are becoming more commonplace in climate change scenarios.

Consideration should also be given to examining the relationship of Lake Erie water levels to those water levels in Lake Superior that are regulated by the locks in Sault Ste. Marie. The need to look more closely at the Superior water levels may be required.

Discussion Question 3
Recommendation 3 needs a firm commitment to the public involved in Lake Erie’s remediation that long-term funding is being put into place to help in that process.

1-888-832-9638 office@nfuontario.ca www.nfuontario.ca
The Watershed Management of Nutrients in Lake Erie Report’s recommendation 1 should use existing monitoring data only until new monitoring data is interpreted for use by lake managers in their quest to obtain the most recent and reliable data available in the study of the lake.

Recommendation 4 of the report needs to address the confusion involved in the relationship that Toledo Harbour dredging by the U.S. Army Corps of Engineers and algal blooms in the western basin of the lake in 2002 have created in the mind of the public. It is already accepted that dumping of dredgeate from the St. Clair River dredging operations into Lake Erie is not a best management practice, so it is unacceptable that dumping of Toledo harbour dredgeate into Lake Erie has been allowed. There must be consistent management practices by the regulators.

The status of the Detroit Municipal Sewage Treatment Plant and the city’s financial situation must be made known and assurances pledged that it is compliant with federal/state regulators.

Finally, an effort should be made to determine how private septic systems are being maintained and the recommended pumping schedules being conducted, regardless of the province’s cancellation of such proposed regulations in the summer of 2017. Separate to this is the prevalence of illegal septic bypasses in the province. The IJC’s public consultation in St. Catherine’s in March 2017 heard in detail of how extensive this problem is in the Region of Niagara.
March 7, 2018

Attn:
International Joint Commission – Canadian
section
234 Laurier Avenue West, 22nd Floor
Ottawa, ON K1P 6K6

International Joint Commission – US section
1717 H Street NW, Suite 801
Washington, DC 20006

Re: Response to Public Consultation – Water Quality Board Reports on Watershed Management Planning to Reduce Nutrient Pollution in Lake Erie.

On behalf of Fertilizer Canada and our members, thank you for the opportunity to provide feedback to the International Joint Commission’s (IJC) public consultation on the Water Quality Board Reports on Watershed Management Planning to Reduce Nutrient Pollution in Lake Erie.

Representing fertilizer manufacturers, distributors and wholesalers, our members are working to advance the development and implementation of new technologies and scientifically-based management practices for agricultural cropping systems. These efforts align well with the sustainable, targeted and collaborative goals the IJC aims to achieve for the Great Lakes.

Fertilizers play an essential role in replenishing nutrients in the soil that are used by plants each growing season, raising soil productivity, and improving soil health; but incorrect nutrient use may lead to negative impacts on a grower’s return on investment and risks increased impacts on the environment. In order to have this downstream assurance of responsible farming, growers will require a framework for understanding and implementing the principles and practices of sustainable agriculture.

4R Nutrient Stewardship has been designed for this purpose and should be referenced as the recommended approach when developing watershed management plans in order to achieve meaningful nutrient load reductions in Lake Erie. The 4R approach brings together universal principles of nutrient management with local evidence-based agronomy. The result is best management practices (BMPs) that make sustainable agriculture a reality on the farm. The 4R Nutrient Stewardship framework encompasses the four main principles of fertilizer application and is designed to link the practices used to manage nutrients in the cropping system to an integrated approach.

- The **Right Source** means ensuring a balanced supply of essential plant nutrients including granular or liquid fertilizers or manures.
- The **Right Rate** is applying just enough fertilizer to meet the needs of the plant while accounting for nutrients already in the soil.
- The **Right Time** means applying fertilizer when the plant will get the most benefit and avoiding times when fertilizer can be lost to the environment.
- The **Right Place** is applying fertilizer where the plants can easily access the fertilizer and where it is less likely to be lost to the water or air.

The fertilizer industry has established the 4R Nutrient Stewardship Framework in cooperation with government, researchers, customers, farm organizations, conservation groups and the
public. Adjustments in the crop nutrient source and application rate, timing, and placement method supports agricultural productivity while also helping to improve the water quality of the Great Lakes, specifically Lake Erie and its contributing watersheds.

4R Nutrient Stewardship Planning
The core of successful 4R Nutrient Stewardship is including a plan for managing applied nutrients that is rooted in all four areas outlined above. One of the key principles of a 4R Nutrient Stewardship plan is site-specific management where nutrient management practices are optimized to match the requirements of the crop and manage environmental risks at the individual field or sub-field level.

The result is a series of BMPs that allow growers to convert principles to practical knowledge that fits local conditions. These BMPs need to be regionally specific and based on scientific studies that are relevant to the local cropping systems.

There are a few things that distinguish 4R Nutrient Stewardship from regular nutrient applications. The first is that the 4Rs are a comprehensive approach to sustainable nutrient management. The framework does not focus on the economic returns, or the environmental impacts, or the social ramifications of nutrient use in isolation. They integrate and look at the overall impact of nutrient management decisions on economic, social and environmental goals. In fact, 4R does more than just look at a farm’s contribution to sustainability, but links cropping system performance to sustainability goals in a measurable and traceable way.

4R Nutrient Stewardship is based on the principle of adaptive management and continuous improvement. So developing a 4R Nutrient Stewardship plan is more than just a paper exercise, it’s a living document that evolves over time and retains its value going forward.

Fertilizer Canada has developed BMP guidance documentation for growers and agri-retailers that provides suites of practices for Nitrogen and Phosphorus organized by major cropping systems and agricultural regions including southern Ontario. Growers are at many different starting points when they first enter into a 4R program. Performance levels allow growers to qualify their nutrient management practices as 4R consistent and consequently sustainable against an independent standard.

4R Certification in Ontario
Ontario represents a portion of Canada’s most viable and productive farmland and has been a leader in nutrient management planning for crop production. We are encouraged to see that 4R Nutrient Stewardship has been embraced as a valuable tool for meeting agricultural and environmental goals as referenced in both the International Joint Commission’s Binational Report and the Canada-Ontario Lake Erie Domestic Action Plan.

“While Ontario soils can supply many of the nutrients needed by crops, to help optimize productivity, additional nutrients from sources such as commercial fertilizer, biosolids and manure may be required. Advancements in nutrient management planning, manure storage, precision application and, more recently, the 4R Nutrient Stewardship approach (applying the right source of nutrients at the right rate, right time and right place), have all improved the judicious application and use of nutrients and reduced the risk of nutrient runoff into waterways.”

In close collaboration with the Nutrient Stewardship Council, the Ohio Agri-Business Association and The Fertilizer Institute in the U.S., the 4R Certification program was developed for Nutrient Service Providers in Ontario. Members of the 4R Ontario Steering Committee oversee the program and represent a diversity of stakeholders including Fertilizer Canada; the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA); the Ontario Agri Business Association (OABA); the Grain Farmers of Ontario; the Ontario Federation of Agriculture; the
The 4R Certification standards were developed as part of a voluntary initiative to improve the watershed conditions of the Western Lake Erie Basin and address the following goals:

- provide uniform nutrient management practices for commercial fertilizer used in Ontario based on best management practices
- optimize crop uptake of nutrients and minimize nutrient losses
- create long-term positive impacts on water bodies associated with agricultural production areas, including the reduction of eutrophication and incidence of harmful algal blooms, and helping to meet water quality standards
- encourage sharing of the most up-to-date information about responsible nutrient stewardship with Nutrient Service Providers and growers and other interested groups
- help the agricultural sector adapt to new research and technology in the area of nutrient stewardship

The 4R Certification program includes a set of 37 standards to be third-party audited on a two-year cycle beginning Fall 2018. The standards have incorporated specific criteria for the purpose of addressing regional priorities for water quality, including references to regional soil fertility recommendations and requirements to prevent nutrient application on frozen ground. The standards are divided into four main sections including training and Education, recommendations, application, and documentation.

The 4R Ontario Steering Committee members will continuously work with the research community to help identify the most effective conservation and nutrient management practices to ensure the standards stay up to date and provide the most current research available.

Canadian 4R Research Network

Over the last seven years industry, government, academia and NGOs have invested a total of $5.63 million in support of research to demonstrate how 4R Nutrient Stewardship plays a critical role in reducing environmental impacts. In 2013, fertilizer industry members in Canada and the U.S. initiated the North American 4R Research Fund in support of efforts to understand the impacts of fertilizer BMPs.

Under Canada’s projects, nine leading researchers are conducting 10 projects to quantify economic, social and environmental benefits resulting from 4R Nutrient Stewardship. Ontario is home to three of the Canadian 4R Researchers, providing outcomes on the environmental, economic, and social benefits of 4R Nutrient Stewardship for optimal nutrient management of major Ontario crops.

The North American fertilizer industry is committed to continuing this important research and has pledged and additional $6 million over the next five years to strengthen fertilizer BMPs that reduce nutrient loss to the environment. 4R Research Fund projects are reviewed and selected by a technical advisory group consisting of industry, academic, and government agency experts in agronomy, environmental sciences, sustainability, government relations, and communications. Successful efforts qualify and quantify the impact of using the 4Rs in order to give certainty to growers, and sound guidance to environmental programs, and policy decision makers. Priorities of the newly committed 4R Research Fund resources include phosphorus loss issues in the Great Lakes and Lake Winnipeg regions.
Lawn & Garden

Fertilizer Canada’s commitment to consumer education is currently demonstrated through our **Greener World program** – a public education initiative that encourages BMPs to users of lawn and garden fertilizers. Fertilizer Canada’s Greener World program teaches home gardeners how best to fertilize lawns and gardens using the 4R principles.

Healthy grass makes several important contributions to the environment. It reduces pollution, absorbs the greenhouse gas carbon dioxide and supplies oxygen. While the Greener World program teaches the importance of how to best use and apply fertilizer safely to maintain a healthy lawn, it is that healthy lawn which becomes one of the most effective tools in minimizing potential for urban runoff. Lawns also clean water through filtration, reduce soil erosion and reduce water run-off.

Phosphorus specifically, is important for establishing new lawns because it promotes the development of strong, healthy roots, vibrant flowers, seeds, early maturity, and a normal healthy green color. Within Canada, Fertilizer Canada members have kept phosphorus in its starter-fertilizer products for new lawns, but have voluntarily eliminated phosphorus from mature lawn fertilizer products. The vast majority of lawn fertilizer sales for these companies are for mature lawns, which do not contain phosphorous.

Recommendations

1. **4R Nutrient Stewardship be recognized as the recommended approach when developing watershed management plans in order to achieve meaningful nutrient load reductions in Lake Erie.** This would qualify as a common principle/component applicable to any watershed and can be easily integrated into a consistent framework to watershed management planning. The 4R approach also aligns with the reports’ suggestions of integrating a “science-driven adaptive management process”, which is a foundation for applying 4R Nutrient Stewardship on farm. Implementation of 4R Nutrient Stewardship, through efforts such as 4R Certification, can serve as a means to measure improved on-farm management of nutrients and support monitoring of agricultural sustainability.

2. **Take advantage of Fertilizer Canada’s resources and programs to educate and enable growers and homeowners to adopt 4R Nutrient Stewardship practices in their watersheds.** These resources can also support communication strategies to key watershed audiences on reducing nutrient losses to the environment.

3. **Continue to encourage support for research to spur innovation for the agriculture industry by increasing the matching contribution for projects.** A key feature of the reports was the need to continue supporting research. Fertilizer Canada received funding under the AgrifInnovation Program and as a result, launched the Canadian 4R Research Network. We encourage Federal and Provincial governments to continue with research funding programs that support industry-led research and development which creates shared value on innovation.

4. **Continued extensive stakeholder consultation throughout the development and implementation of this initiative.** Leverage existing opportunities by endorsing voluntary measures taken, and collaborate with industry stakeholders to achieve the objectives of protecting water resources of the Great Lakes.
Finally, we would like to extend an invitation to request a site visit with one of our lead researchers in the Canadian 4R Research Network or a local 4R demonstration farm to learn more about how we have advanced fertilizer management under 4R Nutrient Stewardship.

Thank you for the opportunity to comment on this important matter. Fertilizer Canada stands ready to work with the IJC as this initiative is further developed and implemented. We look forward to discussing these opportunities with you at your convenience.

Kind regards,

Cassandra Cotton
Director, Sustainability
Fertilizer Canada
March 7, 2018
International Joint Commission (IJC)
234 Laurier Avenue West, 22nd Floor
Ottawa, ON K1P 6K6

RE: Comments on Watershed Management Plans to Reduce Nutrient Pollution in Lake Erie

Thank you for the opportunity to provide comments on two reports from its Great Lakes Water Quality Board: Evaluating Watershed Management Plans, Nutrient Management Approaches in the Lake Erie Basin and Key Locations Outside of the Lake Erie Basin (August 2016) and Watershed Management of Nutrients in Lake Erie (December 2017).

These comments are authored by Environmental Defence, Freshwater Future Canada, and the Canadian Freshwater Alliance. Our organizations are deeply engaged on the issue of increasingly frequent and severe nuisance and toxic algal blooms in Lake Erie.

Overall, we are highly supportive of the recommendations in the report. In our 2016 Expectations for Domestic Action Plans under the Great Lakes Water Quality Agreement document (see attached), we support the development of watershed management plans within the Lake Erie sub-basins and linking the plans to downstream impacts in the Lake Erie basin. In our comments on the December 2017 draft Canada-Ontario Lake Erie Action Plan (also attached) we argue that this approach can also more effectively engage the community in implementing solutions, because they can better see local impacts.

We also propose that watershed planning can help overcome one of our primary criticisms of the Canada-Ontario Lake Erie Action Plan – namely, that it does not describe how individual actions will add-up to the overall phosphorus reduction targets. Planning at a local scale can assist in tracking the progress of actions undertaken by government and partners under this plan. It can also help provide estimates of phosphorus reductions of various actions which can assist in directing adaptive management.
Recommendation 1: Watershed plans should support efforts to achieve specific, subwatershed nutrient reduction targets

Subwatershed allocations should be made for watersheds within the priority tributaries. This framework would provide the basis for establishing “sub-target” reductions for each of the watershed planning areas. Targets for subwatershed allocations would serve to focus local and regional nutrient reduction efforts. This approach would also facilitate a sense of shared responsibility toward meeting the broader goal while providing a narrower focus for ownership of a smaller “piece of the pie”.

Subwatershed allocations provide a framework whereby the progress on implementation can be tracked and reported within watersheds. Understanding where reductions are being achieved (or not being achieved) at the subwatershed level will be fundamental to taking swift action in areas lacking demonstrable progress.

Recommendation 2: Monitoring should be conducted at the subwatershed level

Monitoring is at the heart of demonstrating success. A subwatershed framework would serve as the mechanism to support source identification and allocation, track implementation of best management practices (BMPs) and assess BMP effectiveness. Monitoring stations should be located so that it is possible to estimate how much phosphorus is entering and exiting the watershed, and make it possible to know whether suballocation targets are being met.

Additionally, monitoring within each subwatershed is critical for setting and enforcing suballocation targets. Interim targets may need to be set for some areas where current data is not available. This approach would be satisfactory where current data is not available, but timelines should be set for updating those targets based on monitoring results.

Recommendation #3: Use watershed plans to identify opportunities to implement Geographically Focused Initiatives (GFIs)

Ontario’s *Great Lakes Protection Act, 2015*, allows for the collaborative local development and implementation of geographically-focused initiatives (GFIs) to address priority issues in a specific location.
Initiatives must include a legal policy or policies, or a recommendation for a shoreline regulation. They may also include a range of other policies such as: monitoring and research related policies; and/or action-oriented policies and commitments. It follows that watershed plans may be a useful way of identifying potential GFIs and that the GFI tool may provide a framework to address specific, local conditions and threats.

Conclusion

Our organizations appreciate the opportunity to provide these comments. We urge careful consideration of our comments, in addition to the full DAP Expectations document. All responsible governments must work diligently to ensure Lake Erie provides clean drinking water and a safe, healthy environment that supports fishing, boating, swimming and other various uses by millions of Canadians and Americans.
Expectations for Domestic Action Plans under the Great Lakes Water Quality Agreement

June 21, 2016
Table of Contents

Table of Contents .. 2
Purpose .. 3
Introduction .. 3
Monitoring and Modeling .. 5
 A. Monitoring .. 5
 B. Open Lake Modeling .. 7
 C. Tributary Modeling ... 8
Tracking, Adaptive Management and Reporting 10
 A. Tracking ... 10
 B. Adaptive Management ... 11
 C. Reporting ... 12
Eastern Basin of Lake Erie .. 14
Funding .. 14
Compliance and Enforcement .. 15
Tactics to Meet Nutrient Reduction Targets .. 15
Public Consultation ... 19
References ... 22
Purpose

Seven regional and national organizations from Canada and the United States working in the Lake Erie basin have participated in the development of this document. These groups are the Alliance for the Great Lakes, Canadian Freshwater Alliance, Environmental Defence Canada, Freshwater Future, Michigan League of Conservation Voters, National Wildlife Federation, and the Ohio Environmental Council.

Annex 4 of the Great Lakes Water Quality Agreement calls for binational coordination to manage nutrient concentration and loadings into the Great Lakes. In 2015, the Governments of the United States and Canada (the “Parties” to the Agreement) adopted the ecosystem and substance objectives (the “targets”) for Lake Erie. The Agreement calls on the Parties to define programs and other measures to be undertaken to achieve the nutrient targets. The Parties indicated they intend to cooperate with the jurisdictions in the Lake Erie basin to develop Domestic Action Plans (DAPs) to identify programs and measures to achieve the targets. The purpose of this document is to recommend actions that the aforementioned organizations believe should be included in the forthcoming DAPs that will be developed to achieve the targets.

This document articulates our expectations for the content in the DAPs to the Parties and to participating jurisdictions. This document will serve as a tool for the author organizations to evaluate the draft DAPs as they are released, and to communicate with Lake Erie stakeholders about the actions and investments needed for a clean, restored Lake Erie. The Parties have indicated they expect the DAPs to be “living documents”, to be adjusted and elaborated over time as more information and resources are brought to bear on the issue of harmful and nuisance algal blooms in Lake Erie. Similarly, we anticipate revising this document to address the needed programs and measures to restore Lake Erie as implementation moves forward and more is learned about gaps, options and opportunities.

Introduction

The Great Lakes are a continental and global treasure – their waters sustain millions of people, thousands of communities, a vibrant economy and a truly remarkable ecosystem. Harmful and nuisance algal blooms caused by excess nutrient runoff are among the top threats to the Great Lakes, posing risks to drinking water supplies, quality of life and economic vitality. Nowhere is this more obvious than in the Lake Erie basin, where nearly half a million Americans in the surrounding Toledo, Ohio area went without drinking water for three days, and hundreds of Canadians on Pelee Island went without potable water for nearly two weeks. In addition, recurring algal blooms have negative impacts on tourism and travel, which generates more than $12.9 billion in annual economic impact in Ohio alone and sustains more than 120,000 jobs. In addition, the commercial fishery on Lake Erie, which accounts for about 80% of the total value of the province of Ontario’s $234 million Great Lakes commercial fishery, could be hit especially hard since it relies heavily on species that are vulnerable to the effects of algal blooms.

Canadian and U.S. federal, provincial and state governments have committed to managing phosphorus concentrations and loadings in Lake Erie as a means of reducing algal growth. Phosphorus loading targets for western and central Lake Erie have been adopted under Annex 4 of the Great Lakes Water Quality Agreement of 2012 and under the 2015 Western Basin of Lake Erie Collaborative Agreement signed by the
The re-emergence of harmful and nuisance algal blooms in Lake Erie is a stark reminder of the need for ongoing vigilance and steadfast commitment to the protection and conservation of the Great Lakes. Despite decades of effort and progress by local, state, provincial and federal governments – and a network of non-government organizations (NGOs) – our actions have failed to keep pace with major sources of pollution such as stormwater and agricultural runoff. While we expect the DAPs to demonstrate how existing actions will be scaled up and out across the basin, more of the same is unlikely to address the problem. DAPs must also include new and innovative approaches and policies, especially in light of the increasing challenges that are expected in a future of unpredictable climate change. Without such a comprehensive approach, decades of work to revitalize the economy, environment and quality of life in the Great Lakes region are at risk.

The DAPs can be an important catalyst for actions that enhance resilience and capacity to protect Great Lakes waters. As harmful algal blooms and other water quality issues become increasingly common and severe around the world, there is a unique opportunity in the Lake Erie watershed to demonstrate leadership on sustainable land use management practices, particularly in the agricultural sector. Transforming the way cities are built and land is farmed is not just needed in priority watersheds or the western Lake Erie basin. The DAPs can demonstrate how to encourage change across all landscapes, and how doing so can address multiple water quality issues and advance sustainable economic development.

The author organizations appreciate that the DAPs must account for varying amounts and quality of data and information, and different legal and policy frameworks in each of the Lake Erie jurisdictions. While many of the actions and policies required will need to be implemented at a local scale, the DAPs are an opportunity to provide guidance for needed actions, and to encourage consistency in measuring progress, across the entire Lake Erie basin.

To accomplish the reductions called for in the Annex 4 targets, the following eight components are required to be included in the DAPs. Though this is not an exhaustive list of all possible actions to address phosphorus loading, these recommendations provide a framework for collective action critical to move toward solving the nutrient-related problems facing Lake Erie.

1 Note: U.S. jurisdictions have also included actions in the plans they submitted under the requirements of the 2015 Western Basin of Lake Erie Collaborative Agreement
Monitoring and Modeling

A. Monitoring

An integrated monitoring network across all jurisdictions in the Lake Erie basin will be necessary to assess progress towards improved water quality and ecosystem outcomes. An integrated network should apply accepted protocols for data collection and analysis and allow for comparisons across the Lake Erie basin. An integrated network is necessary to not only support ongoing measurement of progress towards compliance with the adopted targets, but also to provide sufficient information to support an adaptive management approach. Therefore, jurisdictions should seek to establish a robust monitoring network that is capable of tracking change in water quality in the watersheds draining to Lake Erie, as well as monitoring ecosystem change in the lake itself.

The recently released report and associated addendum from the Northeast-Midwest Institute (Betanzo, et al., 2015) provides an in-depth analysis of the gaps and needs for water data in the Maumee River basin. The report addresses the monitoring and information necessary to answer the question: How effective are management practices at reducing nutrients from nonpoint sources at the watershed scale in the Lake Erie drainage basin? The Parties and the jurisdictions must have scientifically credible data to answer this question, and to inform and guide policy solutions in order to fully implement the adaptive management approach called for in the adopted targets for Lake Erie. The report identifies critical monitoring recommendations for scale, sampling frequency and duration, monitoring parameters as well as data documentation and sharing.

While these two reports do not include the level of detail in the Northeast-Midwest Institute report, they do highlight the need to address monitoring design scale and frequency (including seasonal temporal scales) in the jurisdictions in the Lake Erie basin.

Limitations of current monitoring networks highlight the need for all jurisdictions to undertake an assessment of current monitoring capabilities and identify gaps in order to align water quality monitoring with the adopted targets to meet the ecosystem objectives called for in the Agreement. This analysis should inform the commitments by the jurisdictions to update monitoring networks that will be used to monitor water quality conditions and track progress towards the target reductions. In addition, the assessments should address the extent to which common and accepted protocols for data collection and analysis are currently in effect and where adjustments and additions may be needed.
The DAPs should include a summary of the assessment of monitoring capabilities and gaps described above. Specifically, the DAPs should include the plans and commitments to address any shortfalls, incorporating the recommendations from the Northeast-Midwest Institute report and addendum (Betanzo, et al., 2015). The DAPs should include a description of the monitoring networks that will be implemented and are capable of supporting the data necessary to identify water quality and ecosystem trends and guide program investments.

The DAPs need to present monitoring network information by jurisdiction (i.e., states and province) as well as an overview for each respective country, which will facilitate an integrated network across jurisdictions. Clear information on how monitoring and modeling programs work together will enable consistent reporting on progress and trends, and will simplify reporting to the stakeholders and to the public. Consistent, reliable information will streamline assessing progress toward improved water quality, making strategic conservation and restoration investments.

The adopted targets for Lake Erie identify the top tributaries (i.e. priority watersheds) critical to nutrient loading to the Lake. Monitoring at the tributary mouths needs to be comparable across jurisdictions. Monitoring at these tributaries should include annual and spring loading data on total phosphorus, soluble reactive phosphorus and suspended sediments. Data collection should be sufficient to calculate flow weighted mean concentrations to enable comparisons of loadings in a consistent manner across the different river basins in the Lake Erie basin. An expansion of data collection on the Detroit River will also be necessary to refine information on Detroit River loads.

The total phosphorus loads for the major tributaries to Lake Erie have been identified for the 2008 water year (October 1, 2007 to September 30, 2008). We recommend that subwatershed allocations be established for the eight priority tributaries identified in the Recommended Phosphorus Loading Targets for Lake Erie final report based on the 2008 loads (excluding the Leamington tributaries).

Lake Erie Targets

The targets adopted by the Parties to meet the goals of the Great Lakes Water Quality Agreement are based on the best available monitoring and modeling data. These targets are intended to meet the ecosystem objectives in the Agreement including:

- Large harmful algal blooms in the western basin;
- Nearshore algal blooms associated with 8 priority tributaries;
- Hypoxic conditions in the central basin; and
- Nuisance algae (while there is insufficient information to establish a target for Cladophora fouling the eastern basin, scientists believe that phosphorus reductions in the western and central basins will have a beneficial effect in the eastern basin.

The phosphorus targets for Lake Erie make a distinction between spring and annual loading depending on the ecosystem objective of the target. While the targets for both spring and annual loading call for a 40% reduction, the distinction is important in establishing the monitoring regimes necessary to measure and track progress towards meeting the nutrient reduction goals.

The *spring* phosphorus targets are linked to the ecosystem objectives of both the large harmful algal blooms in the western basin (solely for the Maumee River basin) and the smaller, nearshore blooms in eight priority tributaries. The target for a 40% reduction in *spring* loading applies to dissolved reactive and total phosphorus.

The *annual* phosphorus target is linked to the ecosystem objective of reducing the hypoxic area (low oxygen) in the central basin. This also calls for a 40% reduction target and this target applies to all tributaries around the basin draining to the western and central basins and is specific to total phosphorus. The numeric annual target to meet this goal is 6000 metric tons (the recommended limit for the central basin). A 40% reduction amounts to a reduction from the United States and Canada of 3,316 metric tons and 212 metric tons, respectively.
This report recommends subwatershed allocations be made for all HUC 12 or HUC 10 watersheds within the priority tributaries. The scale for subwatershed allocations (HUC 12 or 10) should be consistent across the jurisdictions. This framework provides the basis for establishing “sub-target” reductions to achieve for each of the HUC geographic areas. Targets for subwatershed allocations will serve to focus local and regional nutrient reduction efforts. This approach facilitates a sense of shared responsibility toward meeting the broader goal while providing a narrower focus for ownership of a smaller “piece of the pie”.

The sub-allocations will provide a framework whereby the progress on implementation can be tracked and reported within jurisdictions. Understanding where reductions are being achieved (or not being achieved) at the subwatershed level will be fundamental to taking swift action in areas lacking demonstrable progress.

In addition, a framework based on sub-allocations for the major tributaries will allow jurisdictions and stakeholders to measure, report and verify effectiveness of phosphorus reduction programs.

Such a process would include identifying nutrient pollution sources by category, utilizing emerging technologies such as phosphorus fingerprinting, and quantifying the amount of reduction from each source necessary to meet the allocated targets (at subwatershed scale). It would also help define the priorities within each subwatershed to meet its allocated targets.

Monitoring is at the heart of demonstrating success and as such related data and the synthesis of results should be publicly available and communicated in a manner easily understood by the public. The DAPs should specify how monitoring results from each jurisdiction will be made available in a manner that is transparent and publicly accessible.

The Northeast-Midwest Institute report identifies data sharing and accessibility as critical issues and calls for a coordinating entity to facilitate collaboration among monitoring agencies and organizations. Towards this end, the DAPs should identify such an entity to facilitate more efficient and consistent data sharing while acknowledging there may be limits with data collection not conducted or sponsored by public entities.

B. Open Lake Modeling

The sensitivity of Lake Erie to environmental change makes it necessary to monitor and model ecosystem condition and ecological responses on a periodic, regular cycle. The Parties and the jurisdictions have
embraced an adaptive management approach to meet the targets; monitoring and modeling of ecosystem conditions and responses will be necessary to fully understand the ramifications of implementation investments. These analyses are also needed to capture other changes to the system including the impacts of invasive species, climate change and land use change.

The development of the targets for Lake Erie was based on a suite of nine models to quantify phosphorus loads and eutrophication response relationships for the Lake Erie ecosystem. The authors of this report support the recommendations in the *Recommended Phosphorus Loading Targets for Lake Erie* final report that these models be applied every five years and synchronized with the data collection efforts during the Coordinated Science and Monitoring Initiative (CSMI). The CSMI is a bi-national initiative that brings together over 150 federal, state, academic, and non-governmental institutions to coordinate intensive sampling on a single Great Lake every year on a five-year cycle.

The *Recommended Phosphorus Loading Targets for Lake Erie* report also recommends two additional open water modeling initiatives critical to understanding nutrient impacts on Lake Erie. These are: 1) modeling to determine the nearshore nutrient concentration interactions and quantifying the ecological response relationships; and, open water modeling for *Cladophora* in the eastern basin. We support these recommendations.

C. Tributary Modeling

Tributary modeling can be an invaluable tool for understanding phosphorus loss into surface water and its transport and delivery into the lake. In spring, 2016, the results from three separate modeling projects were announced, all yielding important insights about nutrient losses and need for conservation practices in the Maumee River basin. The three projects include:

- Western Lake Erie Conservation Effects Assessment Project (CEAP) – Cropland; conducted by USDA-ARS using detailed input data to model impacts of conservation practice adoption strategies at the edge of agricultural fields;
- Maumee Watershed Multi-Model; convened by the University of Michigan using six models to forecast likely changes in TP and DRP loads under potential conservation scenarios; and
- Western Lake Erie CEAP – Wildlife; conducted by The Nature Conservancy in partnership with USDA – ARS to estimate impacts of potential impacts of conservation practices on stream health (as indicated by biological indices).

Together, these modeling efforts provide invaluable information about the scope of conservation practices that will be necessary to meet phosphorus reduction targets. Going forward, additional data, particularly the edge-of-field projects underway in Ohio, will provide more detailed data and information for model input that will further refine the ability to simulate land management practices and water quality impacts. The DAPs should include commitments to continuing investments in simulations of agricultural conservation scenarios. As more data becomes available, future applications of watershed-based modeling will be crucial to understanding where and how land management practices need to change to ensure meeting targets. While most modeling efforts to date have focused primarily on the Maumee River basin,
comparable efforts need to be applied to other high phosphorus loading streams to Lake Erie. In particular, streams in the Province of Ontario should seek the data collection and model capability within its jurisdiction to apply these or similar models.

Monitoring and Modeling Recommendation

Summary

- Undertake an assessment of current monitoring capabilities and identify the gaps to align water quality monitoring with the adopted targets to meet the ecosystem objectives called for in the Agreement.

- DAPs should include the plans and commitments to address any shortfalls, incorporating the recommendations from the Northeast-Midwest Institute report and addendum (Betanzo, et al., 2015).

- DAPs should include a description of the monitoring networks that will be implemented, making sure the networks are capable of supporting the data necessary to identify water quality and ecosystem trends and guide program investments.

- DAPs need to present monitoring network information by jurisdiction as well as an overview for each respective country.

- Tributary monitoring at the mouths should include annual and spring loading data that includes total phosphorus, soluble reactive phosphorus and suspended sediments. Data collection should be sufficient to calculate flow weighted mean concentrations to enable comparisons of loadings in a consistent approach across the different river basins in the Lake Erie basin.

- Data collection on the Detroit River should be expanded to refine information on its loads.
Monitoring and Modeling Recommendation
Summary continued

- Subwatershed allocations should be established for the eight priority tributaries based on the 2008 loads (excluding the Leamington tributaries) utilize the subwatershed framework to support source identification and allocation, track BMP implementation \(^1\) and assess BMP effectiveness (BMP tracking is discussed in the section on Tracking and Reporting).

- DAPs should identify a coordinating entity to facilitate collaboration among monitoring agencies and organizations. DAPs should specify how monitoring results from each jurisdiction will be made available in a manner that is transparent and publicly accessible coordinating entity.

- DAPs should incorporate commitments to the recommendations in the *Recommended Phosphorus Loading Targets for Lake Erie* final report that the models utilized to develop the targets be applied every five years and synchronized with the data collection efforts during the Coordinated Science and Monitoring Initiative (CSMI).

- DAPs should include commitments to continuing investments in simulations of agricultural conservation scenarios.

Tracking, Adaptive Management and Reporting

A. Tracking

The DAPs should describe how jurisdictions will track actions implemented to reduce phosphorus loading in the lake and subwatersheds. Reductions from all phosphorus sources should be tracked including (but not limited to) improvements to home sewage treatment systems, lowering allowable effluent discharge limits, projects to reduce combined sewer overflows and implementation of agricultural best management practices so that adoption rates can inform the adaptive management process. The Great Lakes Commission’s Blue Accounting system has potential to assist in the aggregation and analysis of data to help account for data from these phosphorus sources and track progress towards nutrient reduction goals.

Tracking nutrient loading at the tributary mouths into Lake Erie will not be sufficient to determine the efficacy of programs and policies. Information and data on land management actions across the landscape is needed to understand and evaluate the scale and effectiveness of land-based implementation investments.
There are many limitations to tracking management practices in agricultural landscapes in both the U.S. and Canada. However, this information will be critical to understanding changes on the landscape and the resulting effects on nutrient loading to Lake Erie. An adaptive management approach needs to rely on data and information on land and water to ensure program delivery that is efficient and effective. Scientists and policymakers alike will need this information to understand year-to-year changes in loadings and resulting algal blooms in the western basin and nearshore areas. This information is also critical to guide ongoing investments for watershed-scale change.

The Ohio Lake Erie Phosphorus Task Force (August 2013) acknowledged this need and identified several opportunities to track the installation/implementation of land management practices. The Task Force concluded that information needs could be while also meeting the needs of the agricultural sector, who are concerned with maintaining information privacy. A similar analysis needs to be conducted to identify tracking options in Ontario. For both Parties, specific mechanisms need to be identified and implemented. The DAPs need to define by jurisdiction what methods will be employed to track BMP installation.

Tracking of BMP installation will be absolutely critical for policy makers and land managers to understand the extent of nutrient management practices across the landscape, the rate of adoption of practices and sustainability over time. This information will be necessary to determine if the investments being made, both public and private, need to be adjusted and in what ways. Governments cannot know how to manage adaptively without the information to understand the actions that have been taken.

Our organizations recommend establishing BMP tracking that will include practices supported through state, provincial and federal assistance programs. Additionally, the Parties should initiate a program that utilizes third party data collection to inventory the significant number of BMPs that farmers have installed without technical or financial assistance from the public sector. A comprehensive accounting of practices needs to accurately reflect all conservation efforts in order to understand what drives water quality change. The Maryland Department of Agriculture Nutrient Management Program\(^2\) may provide useful insight for this type of tracking and accounting.

In addition to tracking BMP utilization, the author organizations recommend the jurisdictions establish an independent auditing program of BMPs that evaluates installation and functioning. A BMP audit program will serve to verify properly functioning practices that can be evaluated against water quality benefits. Independent audits will ensure taxpayer supported practices are used wisely and increase public confidence for implementation efforts. It will also ensure efforts to monitor BMP benefits are accurate and not undermined by poorly functioning equipment or lack of maintenance.

B. Adaptive Management

The promise of an adaptive management approach is that if something is not working - if actions are not achieving the desired effect - those actions will be adjusted. DAPs should identify specific “trigger” mechanisms that will initiate evaluation and modification of programs and actions based on results and new information. As one example, the DAPs should identify and commit to a 5-year review of the results of

\(^2\) http://mda.maryland.gov/resource_conservation/Pages/farmer_information.aspx
nutrient loading at the tributary mouths and a periodic review of the subwatershed allocations. Lack of progress toward nutrient reduction goals should prompt a review of the implementation approaches, management practice effectiveness and consideration of new priority areas. One approach to a trigger mechanism might be to track BMP implementation and if a certain adoption is not achieved by a certain time, a change in our approach may be needed.

Furthermore, the Western Basin of Lake Erie Collaborative Agreement establishes a 20% reduction interim target for 2020. The DAPs should include a commitment by the participating jurisdictions to that Agreement and an evaluation of existing policies and programs triggered should the 20% reduction not be realized. Finally, the U.S. EPA should include a specific trigger to apply the authority of the Clean Water Act if after five years of DAP implementation monitoring results indicate western basin load reductions will not achieve the 40% target by 2025. This would include developing a Total Maximum Daily Load (TMDL) for the western basin that applies to the whole watershed, along with a tri-state (Indiana, Michigan, Indiana) watershed implementation plan that would restore beneficial uses for assessment units already designated as impaired on state 303(d) lists. Such a TMDL could be developed from the western Lake Erie basin targets and the watershed sub-allocations called for in this report. We recognize the Clean Water Act does not apply in Canada, however, the U.S. EPA can work with the provincial and federal governments to establish an appropriate target and action plan. There could be appropriate authority to do so under Ontario’s Great Lakes Protection Act.

C. Reporting

To ensure plans and proposals will be implemented the DAPs need to include:

- Timelines for accomplishing tasks with clearly identified milestones;
- Clear roles and responsibilities for the multitude of agencies and partners involved in implementation;
- Measures of success - quantifiable ways of tracking progress; and
- Funding needs and potential funding sources.

Communicating progress and providing publicly available results is paramount for demonstrating success and recognizing areas for further improvement. An effective reporting process that incorporates relevant data and information from the jurisdictions and other partners will be crucial for tracking progress. The DAPs should include commitments and a plan for annual reports that detail the status of Domestic Action Plan implementation and progress toward reaching the targets. Such reports would have sections dedicated to each goal, objective, tactic as well as adherence to timelines and benchmarks. Within these sections the annual report should summarize monitoring results and include load reductions achieved in each subwatershed and in each lake basin. It should also detail progress implementing best management practices necessary to achieve target load reductions, and the level of success administering programs and policies. Finally, the report should discuss how the annual results align with the adaptive management framework, including a review of recent advancements in our understanding of the problems and solutions and their implications for the DAPs. There should also be an evaluation of how close we are to trigger points.
As monitoring programs and implementation actions are underway, the DAPs should identify a process to maintain an ongoing list of gaps in knowledge and science (including monitoring and modeling) that need to be addressed to direct future actions. Priorities should be identified and plans be developed to address these gaps. Our ability to address harmful and nuisance algal blooms in Lake Erie will require ongoing improvements in our understanding of land management and the impact on water resources. Ongoing science, monitoring and research will be necessary to inform which policies will move us toward meeting our phosphorus reduction targets.

Tracking, Adaptive Management and Reporting Recommendation Summary

- Track nutrient reductions from all sources.
- Identify and implement tracking mechanism(s) for a comprehensive accounting of all BMP installation funded by both public sector programs and private, independent sources.
- Establish an independent auditing program of BMPs that evaluates installation and proper functioning.
- DAPs should identify specific trigger mechanisms that will initiate evaluation and modification of programs and actions based on monitoring results and new information.
- The DAPs should identify and commit to a trigger mechanism that includes a periodic review of the results of nutrient loading at the tributary mouths and the subwatershed allocations.
- The U.S. DAPs should include a trigger that utilizes the Clean Water Act authorities, including development of a western Lake Erie basin TMDL and a tri-state watershed implementation plan should monitoring indicate the western basin target reduction will not be met by 2025.
- DAPs should include commitments and a plan for annual reports that detail the status of implementation and progress toward reaching the targets.
- DAPs need to include timelines, roles and responsibilities, measures of success and funding needs and funding sources.
- The DAPs should identify a process for maintaining an ongoing list of gaps in knowledge and science (including monitoring and modeling) that need to be addressed to direct future actions. Identify priorities and plans to address these gaps.
Eastern Basin of Lake Erie

The DAPs need to address the actions needed in the eastern Lake Erie basin to meet the ecosystem objective for the reduction of nuisance algae and the specific issues related to *Cladophora*. We appreciate that gaps in scientific understanding and inadequacy of available monitoring pose challenges in adopting a reduction target for the eastern basin, however ideally the draft targets would be released at the same time as the draft DAPs. If such timelines are not feasible, governments should be open and transparent about why. The DAPs should include the timelines for data collection, analysis and projected timeframe for establishing a target(s) for the eastern basin. If eastern basin targets are not set before the DAPs are released, the DAPs should be modified to incorporate action required to meet the eastern basin targets, where appropriate.

Funding

The DAPs should include a section detailing funding needs for each aspect of the plan and include a budget table outlining what resources are available and what resources are required to implement the actions identified in the plans. This would help demonstrate shortfalls under existing levels of funding. Additionally, this section should explain funding priorities and describe various scenarios that identify what actions and achievements are possible under different funding levels.

Among the top funding priorities, the author organizations recommend resources be made available to expand monitoring capacity and implement new programs, policies and authority. Jurisdictions should be investigating how to ensure ongoing funding is made available to support these programs at least until 2025. Such funding would support increases in each jurisdiction’s technical capacity and support efforts to ensure compliance with plans and rules over the long term.

Ultimately, funding DAP implementation needs to go beyond supporting programs in priority watersheds, and transition into a comprehensive approach that will achieve holistic, sustainable agricultural practices across the region. A comprehensive approach will require an evaluation of all tools and approaches, whether they be voluntary or prescriptive through mandatory programs. Resources should be prioritized to account for current and new high nutrient loading areas and watersheds.

Funding Recommendation Summary

- DAPs should include a section detailing funding needs for each aspect of the plan and include a budget table outlining what resources are available and what resources are required to implement the actions identified in the plans.
Compliance and Enforcement

The DAPs should include commitments to ensure adequate compliance and enforcement of the programs and authority that will be applied to implementation of the Plan. Many programs rely on a complaint-based system by citizens for reporting suspected violations. These approaches often only apply to events after they have already polluted waterways, or when a neighbor actually witnesses a violation. Effective enforcement must utilize a proactive system that does not place the burden solely (or mostly) on citizen reporting. The author organizations recommend the DAPs specify how each jurisdiction will achieve the following:

- Establish fair, clear and consistently enforced consequences and penalties (i.e. fines, withdrawal of funding) for non-compliance with policies and plans.
- Dedicate adequate human and financial resources committed to support compliance monitoring and regulatory enforcement.
- Create an inspection program that will randomly assess compliance with plans, programs and rules targeted at key times when nutrient pollution risk is highest.

Tactics to Meet Nutrient Reduction Targets

The ability to reduce phosphorus entering the lake relies on the successful implementation efforts of each of the Lake Erie states and the province of Ontario. The core of any plan is the specific actions that define current and future steps to address both point and nonpoint sources. While there is variability of program and policy authority across the jurisdictions in the Lake Erie basin, the following describes top priority actions that should be undertaken that are essential for reaching nutrient reduction goals.

The DAPs should include specific information on measurable actions and timing for those actions by jurisdiction. The DAPs should also identify responsible entities for implementation. These details will ensure the plan establishes clear expectations and provides the necessary transparency to hold jurisdictions accountable for their implementation.

The focus on the watershed characterization of loads and call for specific programs, actions and delivery mechanisms with timelines and accountability metrics in the Objectives and Tactics sections in the USEPA Annex 4 Domestic Action Plan Outline (September 16, 2015) provide a useful framework for the inclusion of specific actions and authority. The Canadian plan should also include similar sections to add clarity and the requisite specificity necessary to ensure success. Such a framework aligns well with the recommendation earlier in this report for the jurisdictions to provide subwatershed allocations based upon a 40% reduction of the 2008 phosphorus loading identified for each of the major tributaries. Allocations by subwatershed, and associated source identification, will facilitate the ability to align the appropriate actions and authority to meet the allocated targets.
The DAPs should include a timeline to establish the framework and achieve load reductions within each subwatershed. Our organizations also recommend aligning specific tactics to address both point and nonpoint sources identified within each subwatershed proportionate to the amount of phosphorus contributing to the overall subwatershed load. In this manner the DAPs will appropriately address pollution sources both diffuse and discrete from urban areas as well as rural.

Section 5, titled “Tactics” of the US EPA outline document is reserved to detail how DAP implementation will occur and includes the evaluation of actions and programs both current and new to reduce nutrient pollution, as well as a section devoted to proposing necessary future tactics. These elements will be critical components of the DAPs. As noted above, there is wide variability in the programs and authority that exists across the jurisdictions, and the DAPs should include an inventory of these.

In addition, the DAPs should also include an analysis of program and policy gaps for those areas lacking in sufficient authority or funding to meet the reduction targets. Such an analysis should inform future tactics, specifically programs, processes or policy needs which may require new authority, funding, or other solutions beyond 12 months but within 36 months. Additionally, any new programs or policies should achieve both lake and subwatershed loading targets.

Numerous studies and models show phosphorus from farm fields and livestock operations as the dominant source of western Lake Erie’s harmful algal bloom and the most significant contributor to total lake loads. Historically, the main approaches to reducing agricultural pollution have been through voluntary adoption of conservation practices, which thus far have been insufficient to reduce phosphorus loads to the levels necessary to address algal blooms in the lake. Recent actions within some jurisdictions have attempted to strengthen voluntary programs and implement new policies. However to effectively reduce agricultural pollution, broad scale application of best management practices will be necessary. As stated, the DAPs must include specific tactics in proportion to the contributing sources. Therefore it is understandable the plans will have some solutions to address loads from urban and residential areas, but the overall emphasis must be on achieving significant reductions from the agriculture sector.

Furthermore, though the Parties ultimately are responsible for drafting the DAPs and overseeing their implementation, this work is being completed through the Annex 4 subcommittee, which includes participation from Lake Erie states and the Province of Ontario. As such, it is both reasonable and necessary for the DAPs to include specific actions that take place at the jurisdictional level such as promulgating new regulations, or working to enact new laws. Therefore the author organizations recommend the following for future tactics that take place between 12-36 months:

- The states and province should establish new mechanisms that require agricultural producers to identify and implement best management practices that effectively reduce both total and dissolved reactive phosphorus runoff from field surfaces and tile drains.
- The states and province should develop regular uniform standardized soil test sampling, methods and reporting protocols to ensure test results are consistent throughout the Lake Erie watershed.
• The states and province should enact new, or revise current authority, to ensure nutrient applications adhere to appropriate agronomic rates.

• Policies should be enacted or revised that eliminate nutrient application on frozen, snow-covered, and saturated ground, or when the weather forecast calls for heavy precipitation. Not all jurisdictions currently have this requirement, or do with problematic exemptions.

• Where viable or necessary, policies and programs should incentivize land conversion to low phosphorus contributing uses such as switchgrass on marginal agricultural lands, wetland restoration and construction, wood lots, etc.

• The federal, state and provincial governments should promote green infrastructure solutions to reduce urban stormwater pollution by providing funding, regulatory direction and technical support to municipalities and urging the use of green infrastructure as an alternative to more expensive stormwater controls where feasible and appropriate.

• The states and province should provide funding for and direction to local governments to conduct inspections of home sewage treatment systems to identify those that are poorly maintained or failing.

• The states and province should adopt jurisdiction-wide uniform septic code and inspection requirements.

• The states should establish allowable average phosphorus effluent limits of 1 mg/L for publicly owned treatment works (POTW) (1 million gallons per day & up), and growing season (April through September) average phosphorus effluent limits of 0.6 mg/L.

• Conduct an analysis to understand relative contributions of nutrient loading from all sources (including but not limited to home sewage treatment systems, wastewater facilities, combined sewer overflows and nonpoint source agriculture) in the Lake Erie watershed on the Canadian side. That analysis should inform targeting of investments to achieve nutrient reductions in the most efficient and effective manner

• End the dumping of dredged sediments from harbors and river mouths into Lake Erie.

Our organizations acknowledge it is the responsibility of each jurisdiction to implement these policies or programs and the Parties have limited ability to ensure their adoption. However, inclusion in the DAPs demonstrates jurisdictional support, though not necessarily success in actual implementation of each item. As such we ask the Parties to identify specific tools available under federal authority to spur adoption of the specified jurisdictional policies and programs. For example, the U.S. EPA could withhold Great Lake Restoration Initiative funding should the states fail to make the requisite changes in law or policy. Doing so will ensure the DAPs are effective and offer clear direction for the jurisdictions.
Tactics to Meet Nutrient Reduction Targets
Recommendation Summary

● The DAPs should include specific information on measurable actions and timing for those actions by jurisdiction with identification of responsible entities for implementation.

● The Canadian Domestic Action Plan should include sections specifying objectives and tactics similar to the USEPA Annex 4 Domestic Action Plan Outline (September 16, 2015).

● A wide variability of programs and authorities available to implement the DAPs exists across the jurisdictions, and the DAPs should include an inventory of the relevant authorities by jurisdiction (perhaps as an appendix).

● The DAPs should include an analysis of program and policy gaps for those areas lacking in sufficient authorities or funding to meet the reduction targets, and incorporate analysis results into future actions.

In the section devoted to future programs, policies, funding, etc. necessary to achieve target reductions, the DAPs should include the following direction for each jurisdiction in order to address both municipal and agricultural sources of phosphorus pollution:

● The states and province should establish new mechanisms that require agricultural producers to identify and implement best management practices that effectively reduce both total and dissolved reactive phosphorus runoff from field surfaces and tile drains.

● The states and province should develop uniform standardized soil test sampling, methods and reporting protocols to ensure test results are consistent throughout the Lake Erie watershed.

● The states and province should enact new, or revise current, authorities to ensure nutrient applications adhere to appropriate agronomic rates.

● Policies should be enacted or revised that eliminate nutrient application on frozen, snow-covered, and saturated ground, or when the weather forecast calls for heavy precipitation. Not all jurisdictions currently have this requirement, or do with problematic exemptions.
Public Consultation

The GLWQA 2012 contains many places where the Canadian and U.S. federal governments commit to “cooperation and consultation” with the public. The author organizations interpret this as a government commitment to meaningful engagement of the public throughout the development and implementation of all aspects of the Agreement.
In the development of the DAPs, the parties should ensure involvement of all Lake Erie stakeholders. The ultimate success of restoring and maintaining the Lake Erie ecosystem depends on the efforts of everyone. As such, the DAP writing team should ensure ongoing dialogue with a number of stakeholder groups throughout the writing process to help develop recommendations and implementation plans for the identified actions.

Unfortunately, there are a number of examples of inadequate public consultation processes to point to in the implementation of the GLWQA 2012. For instance, the public was not consulted on the Lake Superior Draft LAMP in 2015, until after the document was fully drafted. It is in the development stage that one can have most impact on direction and contents. When working together with stakeholders, governments are more likely to come up with creative and implementable solutions.

Governments should also consider how to create circumstances that will result in the most valuable input and ideas from stakeholders. For instance, it is difficult for stakeholders to understand how they could contribute to collecting data that could help decision making without understanding what data the government has and where gaps in understanding exist.

Public Consultation Summary

- Involve stakeholders at an earlier stage and continuously through the DAP writing process.
- Share information where gaps in science and monitoring exist so that stakeholders can be part of the process that defines ways of addressing the gaps.
- Host a public consultation period that is no shorter than 60 days once the DAPs are drafted. This should be accompanied by in person meetings in key communities across the basin.
- Respond to the public consultation comments received.
- Consider hosting biannual webinars through the implementation process to keep stakeholders apprised of progress.
- Host webinars to complement each written annual progress reports.
Conclusion

Our organizations provide this collective input to help guide creating successful Domestic Action Plans. Toward this end, several key components deserve emphasis: robust, detailed monitoring and modelling requirements; ongoing tracking and reporting that informs a clear adaptive management approach; adequate and consistent funding; proactive compliance and enforcement mechanisms; and specific tactics that extend beyond traditional approaches that have failed to date to solve the problem. The DAPs must also address Lake Erie’s entire basin, including the eastern portion. Finally, the public needs to be part of the whole process - including the development of the plans through to implementation.

The success of these Domestic Action Plans is absolutely crucial, not only in order to help restore Lake Erie’s water quality, but to serve the millions of Canadians and Americans that rely on a healthy Lake Erie for their drinking water, recreation, employment and overall wellbeing. Excessive nutrient loading and algal blooms are a direct threat to their quality of life and strong local economies. Fortunately, federal, state and provincial governments in the basin have made a number of commitments to reduce phosphorus loading to the lake, and our organizations support the spirit of these efforts.

We would like to thank the Annex 4 leads and team for the opportunity to submit this document. We look forward to working with the team throughout the development and implementation of the DAPs. We view this document as a discussion piece that can act as a starting point for further constructive dialogue.
References

Ohio Lake Erie Phosphorus Task Force II Final Report, August, 2015. Ohio Lake Erie Commission, Ohio Department of Agriculture, Ohio Department of Natural Resources, Ohio Environmental Protection Agency.

Comments on Partnering on Achieving Phosphorus Loading Reductions in Lake Erie from Canadian Sources: A Draft Canada-Ontario Lake Erie Action Plan

December 4, 2017

Ms. Madhu Malhotra
Ministry of the Environment and Climate Change
40 St. Clair Avenue West Floor 10
Toronto Ontario M4V 1M2
madhu.malhotra@ontario.ca

Ms. Sandra George
Environment and Climate Change Canada
4905 Dufferin Street
North York, ON M3H 5T4
sandra.george@canada.ca

Thank you for the opportunity to provide comments on the proposed Partnering on Achieving Phosphorus Loading Reductions in Lake Erie from Canadian Sources: A Draft Canada-Ontario Lake Erie Action Plan (“Action Plan”) dated November 2017.

These comments are authored by Freshwater Future, Environmental Defence, and the Canadian Freshwater Alliance. They are to be interpreted as a supplement to the comments submitted on the first draft of the Action Plan dated May 24, 2017.

The governments of Ontario and Canada need to take a leadership role in developing, implementing and resourcing a comprehensive Lake Erie Action Plan with concrete actions that will reduce nutrient pollution to levels that support a healthy lake. The plan needs to go beyond what governments are already doing, in order to achieve the level of action required to meet the 40 per cent phosphorus load reduction target.

While the Action Plan has been strengthened in a number of areas—particularly as it relates implementation details, research and monitoring—there is still little indication that the plan will result in clear, definitive action to reduce phosphorus loading from the agricultural landscape. Overall, the plan fails to offer solutions commensurate with the problem.
Priority recommendations

Below is a table that outlines key changes that must be made to ensure that the phosphorus reduction targets can be met. The table highlights the largest gaps in the plan. Our commentary on positive changes to the latest version of the draft plan is below the table.

<table>
<thead>
<tr>
<th>ASSESSMENT OF DRAFT ACTION PLAN</th>
<th>JUSTIFICATION</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
</table>
| **1. Develop a holistic approach to address agricultural sources** | The plan is still largely reliant on volunteer activities from the agricultural sector. It is widely acknowledged that advancing toward a 40% reduction will require changes in agricultural practices supported by a holistic approach that includes a combination of financial incentives, new legislative tools, policy mechanisms, and education. | This approach is also reinforced by the International Joint Commission in their Triennial Assessment of Progress on the GLWQA:

The Parties further act on advice from the IJC’s 2014 report on Lake Erie, most notably with respect to the need for enforceable standards governing the application of agricultural fertilizer and animal waste, along with better linkage between agricultural subsidies and farm operator use of conservation practices that are demonstrably effective at curbing phosphorus runoff. |

<p>| Enhance the rules for agriculture | Rules should be in place to encourage adoption of common sense actions that clearly reduce nutrient loss, are possible for farmers to implement (economically and logistically feasible), provide on-farm benefits (such as improving soil health and erosion control), and maintain/enhance production. This might include practices such as soil-test-informed application rates. | Address gaps in the Nutrient Management Act by requiring all farms (both livestock and cropland) to develop and implement nutrient management plans that govern the application of nutrients including soil-test-informed application rates and other common-sense actions that effectively reduce phosphorus loss. |</p>
<table>
<thead>
<tr>
<th>Provide financial incentives to accelerate installation and application of BMPs</th>
<th>There will be costs associated with improving the way farms manage nutrients. Governments must provide programs to help farmers in the Lake Erie basin implement practices on their land to reduce runoff.</th>
<th>Include a commitment in the Action Plan to create a dedicated funding stream for BMP application focused on phosphorus reduction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance education and outreach to improve agricultural stewardship</td>
<td>A formalized program is required to motivate farmers to implement practices in order to meet the phosphorus reduction targets. Outreach and extension services should provide farmers with access to trusted, well informed and unbiased experts to help determine which combination of BMPs are best be suited to their field in a way that can reduce runoff pollution and maintain farm productivity.</td>
<td>Create a government-funded outreach and extension program.</td>
</tr>
<tr>
<td>Invest in and commit to compliance and enforcement</td>
<td>All farms should follow the rules. In 2013-2014, only three per cent of the farms with nutrient management plans were inspected. And of those farms, 50 per cent were non-compliant. Furthermore, half of those posed a risk to the environment and human health. There are gaps in the restrictions on the application of nutrients during the non-growing season. Nutrients need to be managed as a valuable farm input not a waste product.</td>
<td>The MOECC must invest adequately in its compliance and enforcement program as part of a holistic approach to improving agricultural stewardship. Address loopholes in the Nutrient Management Act including applying further restrictions on the application of nutrients during the non-growing season by February 2019.</td>
</tr>
</tbody>
</table>
2. Demonstrate how the plan’s actions will achieve the phosphorus reduction target
The draft plan includes many useful initiatives but falls far short of providing assurance that the proposed actions will add up to meeting the 40 percent reduction targets.

<table>
<thead>
<tr>
<th>Demonstrate measureable impact</th>
<th>To assist in tracking progress, wherever possible, actions undertaken by government and partners under this plan should provide estimated phosphorus reductions. For example, the MNRF should ask DUC to estimate phosphorus reductions that will result from their Wetland Restoration Initiative. This is also critical to ensuring the success of the adaptive management approach. Such an approach should include commitments to specific benchmarks with metrics to assess progress and consequences for not meeting water quality goals.</th>
<th>The implementation framework must include an analysis of actions that measure the degree to which they will advance phosphorus reduction targets. To do so, the tasks outlined in the work plan tasks should include expected deliverables, outcomes and quantifiable performance metrics. Create a framework that can assess whether the objectives of the plan are being achieved.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commit to meet targets by 2025</td>
<td>The province of Ontario has committed to meeting the phosphorus reduction targets by 2025 under the Great Lakes Protection Act. The federal government is an equal partner in achieving this goal and they should also demonstrate their commitment to restoring the health of Lake Erie by setting a timeline for action.</td>
<td>Include a commitment to meet the phosphorus reduction targets by 2025.</td>
</tr>
</tbody>
</table>
3. Implement a subwatershed approach to meeting phosphorus reduction targets
To improve community engagement and the effectiveness of solutions, the plan should establish a framework for achieving load reductions at the subwatershed level.

<table>
<thead>
<tr>
<th>Subwatershed planning</th>
<th>Subwatershed management can be an important strategy in improving water quality throughout the watershed. Allocations by subwatershed, and associated source identification, will facilitate the ability to align the appropriate actions and authorities to meet the allocated targets. This approach can also more effectively engage the community in implementing solutions because they can better see local impacts.</th>
<th>Provide subwatershed allocations (i.e., quaternary) based on a 40% reduction of the 2008 phosphorus loading identified for the Grand and Thames River watersheds. Create subwatershed management plans that outline strategies for meeting the allocation targets. Ensure the monitoring framework supports subwatershed allocations, management and tracking of success.</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is encouraging that the Action Plan commits to implementing a “nested watershed monitoring approach in the Thames River to model and track nutrient dynamics and changes over time.” This is a beneficial step towards a more comprehensive subwatershed planning framework that should be implemented in the Thames and Grand River watersheds.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Guarantee ongoing effort to addressing eastern basin algae
The plan must clearly articulate how it will move forward to determine what is required to reduce cladophora in the eastern basin. A precautionary approach must be implemented in the meantime to continue to improve water quality throughout the eastern basin, and in particular the Grand River watershed.

<table>
<thead>
<tr>
<th>Continue research to better understand factors affecting cladophora growth</th>
<th>It is understood that the link between tributary phosphorus outputs and cladophora growth needs more research. This research should be done as soon as possible in order to implement cost effective solutions that will improve water quality in the eastern basin of Lake Erie and throughout the watershed. It is also important that this effectively lays the groundwork for addressing cladophora in Lake Ontario.</th>
<th>Create and publish a detailed work plan for the research and activities associated with addressing algae in the eastern basin. It should include a robust research plan with milestones and timelines to acquire the scientific knowledge required. Implementation needs to be funded in it’s entirety so that cladophora in the eastern basin of Lake Erie can be addressed in a timely manner.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The plan outlines additional science and monitoring that will occur in the eastern basin. This work must have guaranteed funding and occur as quickly as possible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply a precautionary approach to setting science-based targets for the eastern basin</td>
<td>Our scientific understanding of nutrient dynamics and algal growth is continuously evolving. We should not let this stand in the way of setting science-based targets that can direct and motivate action to improve water quality.</td>
<td>The precautionary approach to phosphorus pollution outlined in the draft action plan should be fully embraced and implemented with respect to setting targets for the eastern basin.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Implement subwatershed planning in the Grand River watershed</td>
<td>Don’t delay action while targets are being set. As described above, a subwatershed approach can be applied to the Grand River watershed to identify opportunities for water quality improvements and nutrient reduction.</td>
<td>See recommendation above regarding creating subwatershed plans. This approach should be applied in priority tributaries and the Grand River watershed.</td>
</tr>
<tr>
<td>5. Increase protection for wetlands in the Lake Erie watershed</td>
<td>The Action Plan’s reliance on Ontario’s Wetland Conservation Strategy as a key tool for protecting wetlands is inadequate.</td>
<td></td>
</tr>
<tr>
<td>Improve wetland policy to appropriately address Lake Erie’s unique circumstances.</td>
<td>The protection of wetlands is a cost-effective solution that supports nutrient retention on the landscape, yet wetland loss continues to occur in the Lake Erie basin. A recent study by University of Waterloo¹ shows that wetlands (especially small ones) play an important role in preventing algal blooms in the Great Lakes.</td>
<td>Enhance wetland protection policy to define targets and timelines for net gain of wetland areas in the Lake Erie basin.</td>
</tr>
<tr>
<td>Set wetland restoration targets including for coastal wetland areas.</td>
<td>Coastal wetlands are particularly valuable from an ecological and phosphorus reduction perspective. The IJC’s 2014 LEEP report recommends jurisdictions</td>
<td>Create and/or direct wetland programs to set a target of at least 10% increase in coastal wetland areas. Include estimations for phosphorus retention.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Strengthen governance to ensure maintained progress over time and promote accountability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create detailed work plans to support implementation</td>
</tr>
<tr>
<td>The Action plan commits to an implementation framework that includes developing detailed work plans. There is no further information about what details will be included.</td>
</tr>
<tr>
<td>Empower the Lake Erie Nutrients Working Group</td>
</tr>
<tr>
<td>The Action Plan commits to consulting the Lake Erie Nutrients Working Group to share perspectives, identify actions, and provide input / advice but there are no details about how often the group will meet.</td>
</tr>
<tr>
<td>Create a structure for regular interaction among senior government officials in partner agencies</td>
</tr>
<tr>
<td>The Action Plan commits to working with the Lake Erie Nutrients Working Group, but it does not consider how interest and regular interaction will be maintained.</td>
</tr>
</tbody>
</table>

| “commit to the goal of a 10 per cent increase by 2030 beyond current levels of coastal wetland areas in the western basin of Lake Erie to reduce nutrient pollution and promote biodiversity (an increase of about 1,053 ha or 2,600 acres).” |
| The implementation framework and associated work plans should be completed and published within one year (by February 2019). |
| The Lake Erie Nutrients Working Group should meet a minimum of twice per year. |

| The work required to meet the targets will take place over decades. Ensuring ongoing and continuous involvement of multiple sectors will help promote accountability, track progress and support adaptive management. |
| Maintain commitment to implementation from the senior officials of all partner agencies is paramount to the plan’s success. Annual meetings can promote cross ministerial cooperation and ensure timelines are met. |
| Commit to annual Lake Erie Check up meetings with senior government officials from all partner agencies. |

| Revisit and refine the terms of reference for the group on a regular basis to ensure that the group remains effective over time. |
| If new science or knowledge becomes available, this forum could serve as a mechanism |
| Consider the COA Executive Committee meetings as a platform to support these meetings. |
among senior officials of the partner agencies. for making changes to the plan between the five year reviews. The meetings should be open and transparent to the public.

Encourage ongoing engagement of other partners and stakeholders in the plan.

While the plan acknowledges the importance of effectively engaging stakeholders and partners, it should establish a process whereby anyone can add actions to the plan at any time.

As part of the first round of consultation, the authors of the Action Plan asked others to add actions they will take to reduce phosphorus entering Lake Erie. There should be an ongoing opportunity for partners to add their ideas. This will help encourage ongoing interest and engagement in the implementation of the plan.

Create an open process (e.g., an online form) whereby agencies, stakeholders and other partners can add actions they will undertake as part of the Action Plan at any time (i.e., do not wait for the 5-year review). These actions should be added to the plan as they are finalized. New partners should be invited to join the Implementation Team.

7. **Reduce pollution from septic systems**

Ensure maintenance of septic systems.

The first draft of the Action Plan included a commitment to “consider enhancing and clarifying regionalized requirements for mandatory pump-out and inspections of septic systems.” This was removed in the second draft and should be reinstated.

Septic systems were highlighted as one of the five recommendations made by the IJC in their Triennial Assessment of Progress: Periodic testing be required and enforceable standards for maintenance and replacement of septic systems be instituted in the United States and Canada.

Commit to enhancing and clarifying regionalized requirements for mandatory pump-out and inspections of septic systems by February 2019.
Improvements to the first draft of the Action Plan

We applaud the plan’s authors for a number of additions and improvements made to the first draft of the action plan. We think these changes will enhance the effectiveness of the plan. We are particularly encouraged by the following changes:

Improved education and outreach regarding the agricultural sector
- Resources made available to support BMP demonstration projects and innovative solutions ($3.55M over 4 years)
- Ontario will work with the agriculture sector and partners to communicate best practices through educational materials, events, technology demonstrations, peer-to-peer learning opportunities and demonstration farms that foster the adoption of BMPs (such as responsible nutrient management including soil testing, crop rotation, erosion control structures and green infrastructure) and lead to a reduction of phosphorus loss to the environment. (needs to be funded program)
- Ontario’s livestock and poultry sector will lead the establishment of peer-to-peer regional advisory committees to provide education and awareness to producers that timing matters for the application of nutrients, with the goal being to effect behavioural change and reduce risk of nutrient loss to the environment.

Enhance subwatershed planning
- Will identify phosphorus sources and develop phosphorus reduction management strategies and plans for selected tributaries/regions in the Lake Erie watershed, including the Sydenham River and Thames River as well as the Essex Region tributaries including the Leamington tributaries, Kettle Creek, Catfish Creek and the Grand River.
- Will implement in 2017 a nested watershed monitoring approach in the Thames River to model and track nutrient dynamics and changes over time

Improved accountability
- Commitment to develop an implementation framework based on a collaborative governance model, that includes:
 - developing detailed work plans
 - tracking progress toward plan implementation
 - assessing progress against phosphorus reduction target,
 - facilitate co-ordinated action across agencies and partners
 - evaluating information as it becomes available and recommending changes to actions as required
 - providing ongoing engagement opportunities for stakeholders, partners and the general public
- Included timelines for when some projects would begin such as when the review of the sewage haul policies will begin
 - **Recommendation: the review completion dates should be included**
• A Lake Erie Nutrients Working Group will continue to be used as a platform for sharing multi-sectoral perspectives, identifying potential actions, and for providing input and advice on the development and implementation of this action plan.
 ○ See recommendations above

Climate Change
• Increased consideration of the impacts of climate change throughout the plan.

Improving monitoring throughout the plan, including:
• Canada, starting in 2017, will investigate the exchange of nutrients between groundwater and surface water in the Thames River watershed to better understand the relationship between seasonal and year-to-year nutrient fluxes, land use and climate variations.
• Will undertake a monitoring and research project to better understand the source and types of phosphorus that are contributing to nearshore algal blooms in Lake St. Clair.
• Various monitoring projects in the eastern basin
 ○ See additional recommendations for eastern Lake Erie above

Improved transparency
• Commitment to making data publicly available in various cases (E.g., Conservation Ontario will continue to undertake a partnership with the Great Lakes Observing System to help enable conservation authorities to make their data discoverable and accessible.)

Commitment to communicating/tracking progress, including
• Canada and Ontario will update the Great Lakes community on the progress of implementing the action plan through webinars, forums, meetings and other opportunities. (need more solid commitment, annual)
• Will provide annual assessments of phosphorus loads entering Lake Erie from Canadian sources.
• Canada and Ontario will establish a suite of performance measures to track the impacts of actions over time, including changes to phosphorus loadings. Actions will be adjusted as necessary based on an adaptive management framework.
• Canada and Ontario will work with U.S. federal and state agencies and other partners (e.g., through the GLWQA’s “Nutrients” annex and the Great Lakes Commission’s Blue Accounting ErieStat pilot project) to develop a binational information platform to track progress toward meeting the phosphorus reduction targets.
• Will develop performance metrics to track the impacts of actions over time, including changes to phosphorus loadings.
 ○ Recommendation: Set a date for completing the performance metrics